Title: | Tools for Analysing and Visualising Viva Insights Data |
---|---|
Description: | Opinionated functions that enable easier and faster analysis of Viva Insights data. There are three main types of functions in 'wpa': (i) Standard functions create a 'ggplot' visual or a summary table based on a specific Viva Insights metric; (2) Report Generation functions generate HTML reports on a specific analysis area, e.g. Collaboration; (3) Other miscellaneous functions cover more specific applications (e.g. Subject Line text mining) of Viva Insights data. This package adheres to 'tidyverse' principles and works well with the pipe syntax. 'wpa' is built with the beginner-to-intermediate R users in mind, and is optimised for simplicity. |
Authors: | Martin Chan [aut, cre], Carlos Morales [aut], Mark Powers [ctb], Ainize Cidoncha [ctb], Rosamary Ochoa Vargas [ctb], Tannaz Sattari [ctb], Lucas Hogner [ctb], Jasminder Thind [ctb], Simone Liebal [ctb], Aleksey Ashikhmin [ctb], Ellen Trinklein [ctb], Microsoft Corporation [cph] |
Maintainer: | Martin Chan <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.9.1 |
Built: | 2024-12-19 06:10:31 UTC |
Source: | https://github.com/microsoft/wpa |
Analyse the distribution of weekly after-hours collaboration time. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
afterhours_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(1, 2, 3) )
afterhours_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(1, 2, 3) )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
cut |
A vector specifying the cuts to use for the data, accepting "default" or "range-cut" as character vector, or a numeric value of length three to specify the exact breaks to use. e.g. c(1, 3, 5) |
Uses the metric After_hours_collaboration_hours
.
See create_dist()
for applying the same analysis to a different metric.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other After-hours Collaboration:
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
external_rank()
# Return plot afterhours_dist(sq_data, hrvar = "Organization") # Return summary table afterhours_dist(sq_data, hrvar = "Organization", return = "table") # Return result with a custom specified breaks afterhours_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))
# Return plot afterhours_dist(sq_data, hrvar = "Organization") # Return summary table afterhours_dist(sq_data, hrvar = "Organization", return = "table") # Return result with a custom specified breaks afterhours_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))
Analyze weekly after-hours collaboration hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.
afterhours_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
afterhours_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric After_hours_collaboration_hours
.
See create_fizz()
for applying the same analysis to a different metric.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A jittered scatter plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other After-hours Collaboration:
afterhours_dist()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
external_rank()
# Return plot afterhours_fizz(sq_data, hrvar = "LevelDesignation", return = "plot") # Return summary table afterhours_fizz(sq_data, hrvar = "Organization", return = "table")
# Return plot afterhours_fizz(sq_data, hrvar = "LevelDesignation", return = "plot") # Return summary table afterhours_fizz(sq_data, hrvar = "Organization", return = "table")
Provides a week by week view of after-hours collaboration time, visualized as line charts. By default returns a line chart for after-hours collaboration hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.
afterhours_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
afterhours_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric After_hours_collaboration_hours
.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted line plot for the metric.
"table"
: data frame. A summary table for the metric.
create_line()
for applying the same analysis to a different metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other After-hours Collaboration:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
external_rank()
# Return a line plot afterhours_line(sq_data, hrvar = "LevelDesignation") # Return summary table afterhours_line(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a line plot afterhours_line(sq_data, hrvar = "LevelDesignation") # Return summary table afterhours_line(sq_data, hrvar = "LevelDesignation", return = "table")
This function scans a Standard Person Query for groups with high levels of After-Hours Collaboration. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by hours of After-Hours Collaboration Hours.
afterhours_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" )
afterhours_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
mode |
String to specify calculation mode. Must be either:
|
plot_mode |
Numeric vector to determine which plot mode to return. Must
be either
|
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric After_hours_collaboration_hours
.
See create_rank()
for applying the same analysis to a different metric.
When 'table' is passed in return
, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other After-hours Collaboration:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_summary()
,
afterhours_trend()
,
external_rank()
Provides an overview analysis of after-hours collaboration time. Returns a bar plot showing average weekly after-hours collaboration hours by default. Additional options available to return a summary table.
afterhours_summary(data, hrvar = "Organization", mingroup = 5, return = "plot") afterhours_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
afterhours_summary(data, hrvar = "Organization", mingroup = 5, return = "plot") afterhours_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric After_hours_collaboration_hours
.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other After-hours Collaboration:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_trend()
,
external_rank()
# Return a ggplot bar chart afterhours_summary(sq_data, hrvar = "LevelDesignation") # Return a summary table afterhours_summary(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a ggplot bar chart afterhours_summary(sq_data, hrvar = "LevelDesignation") # Return a summary table afterhours_summary(sq_data, hrvar = "LevelDesignation", return = "table")
Provides a week by week view of after-hours collaboration time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.
afterhours_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
afterhours_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
Character vector specifying what to return, defaults to
|
Uses the metric After_hours_collaboration_hours
.
Returns a 'ggplot' object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other After-hours Collaboration:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
external_rank()
# Run plot afterhours_trend(sq_data) # Run table afterhours_trend(sq_data, hrvar = "LevelDesignation", return = "table")
# Run plot afterhours_trend(sq_data) # Run table afterhours_trend(sq_data, hrvar = "LevelDesignation", return = "table")
Anonymize categorical variables such as HR variables by replacing values with dummy team names such as 'Team A'. The behaviour is to make 1 to 1 replacements by default, but there is an option to completely randomise values in the categorical variable.
anonymise(x, scramble = FALSE, replacement = NULL) anonymize(x, scramble = FALSE, replacement = NULL)
anonymise(x, scramble = FALSE, replacement = NULL) anonymize(x, scramble = FALSE, replacement = NULL)
x |
Character vector to be passed through. |
scramble |
Logical value determining whether to randomise values in the categorical variable. |
replacement |
Character vector containing the values to replace original
values in the categorical variable. The length of the vector must be at
least as great as the number of unique values in the original variable.
Defaults to |
jitter
unique(anonymise(sq_data$Organization)) rep <- c("Manager+", "Manager", "IC") unique(anonymise(sq_data$Layer), replacement = rep)
unique(anonymise(sq_data$Organization)) rep <- c("Manager+", "Manager", "IC") unique(anonymise(sq_data$Layer), replacement = rep)
Calculates Weight of Evidence (WOE) and Information Value (IV) between a
single predictor and a single outcome variable. This function implements the
common Information Value calculations whilst maintaining the minimum reliance
on external dependencies. Use map_IV()
for the equivalent of
Information::create_infotables()
, which performs calculations for multiple
predictors and a single outcome variable.
calculate_IV(data, outcome, predictor, bins)
calculate_IV(data, outcome, predictor, bins)
data |
Data frame containing the data. |
outcome |
String containing the name of the outcome variable. |
predictor |
String containing the name of the predictor variable. |
bins |
Numeric value representing the number of bins to use. |
The approach used mirrors the one used in Information::create_infotables()
.
A data frame is returned as an output.
Convert a text string from the format "CamelCase" to "Camel Case". This is used for converting variable names such as "LevelDesignation" to "Level Designation" for the purpose of prettifying plot labels.
camel_clean(string)
camel_clean(string)
string |
A string vector in 'CamelCase' format to format |
Returns a formatted string.
Other Support:
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
camel_clean("NoteHowTheStringIsFormatted")
camel_clean("NoteHowTheStringIsFormatted")
The function generates an interactive HTML report using the Standard Person Query data as an input. The report contains a series of summary analysis and visualisations relating to key capacity metrics in Viva Insights,including length of week and time in after-hours collaboration.
capacity_report( data, hrvar = "Organization", mingroup = 5, path = "capacity report", timestamp = TRUE )
capacity_report( data, hrvar = "Organization", mingroup = 5, path = "capacity report", timestamp = TRUE )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
path |
Pass the file path and the desired file name, excluding the file extension.
For example, |
timestamp |
Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE. |
An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.
Other Reports:
IV_report()
,
coaching_report()
,
collaboration_report()
,
connectivity_report()
,
generate_report()
,
meeting_tm_report()
,
read_preamble()
,
subject_validate_report()
,
validation_report()
,
workpatterns_report()
Checks whether a data frame contains all the required variables. Matching works via variable names, and used to support individual functions in the package. Not used directly.
check_inputs(input, requirements, return = "stop")
check_inputs(input, requirements, return = "stop")
input |
Pass a data frame for checking |
requirements |
A character vector specifying the required variable names |
return |
A character string specifying what to return. The default value is "stop". Also accepts "names" and "warning". |
The default behaviour is to return an error message, informing the
user what variables are not included. When return
is set to "names", a
character vector containing the unmatched variable names is returned.
Other Support:
camel_clean()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
# Return error message ## Not run: check_inputs(iris, c("Sepal.Length", "mpg")) ## End(Not run) #' # Return warning message check_inputs(iris, c("Sepal.Length", "mpg"), return = "warning") # Return variable names check_inputs(iris, c("Sepal.Length", "Sepal.Width", "RandomVariable"), return = "names")
# Return error message ## Not run: check_inputs(iris, c("Sepal.Length", "mpg")) ## End(Not run) #' # Return warning message check_inputs(iris, c("Sepal.Length", "mpg"), return = "warning") # Return variable names check_inputs(iris, c("Sepal.Length", "Sepal.Width", "RandomVariable"), return = "names")
Prints diagnostic data about the data query to the R console, with information such as date range, number of employees, HR attributes identified, etc.
check_query(data, return = "message", validation = FALSE)
check_query(data, return = "message", validation = FALSE)
data |
A person-level query in the form of a data frame. This includes:
All person-level query have a |
return |
String specifying what to return. This must be one of the following strings:
See |
validation |
Logical value to specify whether to show summarized version. Defaults to |
This can be used with any person-level query, such as the standard person query, Ways of Working assessment query, and the hourly collaboration query. When run, this prints diagnostic data to the R console.
A different output is returned depending on the value passed to the return
argument:
"message"
: a message is returned to the console.
"text"
: string containing the diagnostic message.
Other Data Validation:
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
check_query(sq_data)
check_query(sq_data)
The function generates an interactive HTML report using Standard Person Query data as an input. The report contains a series of summary analysis and visualisations relating to key coaching metrics in Viva Insights, specifically relating to the time spent between managers and their direct reports.
coaching_report( data, hrvar = "LevelDesignation", mingroup = 5, path = "coaching report", timestamp = TRUE )
coaching_report( data, hrvar = "LevelDesignation", mingroup = 5, path = "coaching report", timestamp = TRUE )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
path |
Pass the file path and the desired file name, excluding the file
extension. For example, |
timestamp |
Logical vector specifying whether to include a timestamp in
the file name. Defaults to |
An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.
Other Reports:
IV_report()
,
capacity_report()
,
collaboration_report()
,
connectivity_report()
,
generate_report()
,
meeting_tm_report()
,
read_preamble()
,
subject_validate_report()
,
validation_report()
,
workpatterns_report()
Provides an overview analysis of Weekly Digital Collaboration. Returns an stacked area plot of Email and Meeting Hours by default. Additional options available to return a summary table.
collaboration_area(data, hrvar = NULL, mingroup = 5, return = "plot") collab_area(data, hrvar = NULL, mingroup = 5, return = "plot")
collaboration_area(data, hrvar = NULL, mingroup = 5, return = "plot") collab_area(data, hrvar = NULL, mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. A Ways of Working assessment dataset may also be provided, in which Unscheduled call hours would be included in the output. |
hrvar |
HR Variable by which to split metrics, defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metrics Meeting_hours
, Email_hours
, Unscheduled_Call_hours
,
and Instant_Message_hours
.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked area plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Collaboration:
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
# Return plot with total (default) collaboration_area(sq_data) # Return plot with hrvar split collaboration_area(sq_data, hrvar = "Organization") # Return summary table collaboration_area(sq_data, return = "table")
# Return plot with total (default) collaboration_area(sq_data) # Return plot with hrvar split collaboration_area(sq_data, hrvar = "Organization") # Return summary table collaboration_area(sq_data, return = "table")
Analyze the distribution of Collaboration Hours. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
collaboration_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(15, 20, 25) ) collab_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(15, 20, 25) )
collaboration_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(15, 20, 25) ) collab_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(15, 20, 25) )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
cut |
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20) |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
The metric Collaboration_hours
is used in the calculations. Please ensure
that your query contains a metric with the exact same name.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Collaboration:
collaboration_area()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
# Return plot collaboration_dist(sq_data, hrvar = "Organization") # Return summary table collaboration_dist(sq_data, hrvar = "Organization", return = "table")
# Return plot collaboration_dist(sq_data, hrvar = "Organization") # Return summary table collaboration_dist(sq_data, hrvar = "Organization", return = "table")
Analyze weekly collaboration hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.
collaboration_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot") collab_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
collaboration_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot") collab_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A jittered scatter plot for the metric.
"table"
: data frame. A summary table for the metric.
The metric Collaboration_hours
is used in the calculations. Please ensure
that your query contains a metric with the exact same name.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Collaboration:
collaboration_area()
,
collaboration_dist()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
# Return plot collaboration_fizz(sq_data, hrvar = "Organization", return = "plot") # Return summary table collaboration_fizz(sq_data, hrvar = "Organization", return = "table")
# Return plot collaboration_fizz(sq_data, hrvar = "Organization", return = "plot") # Return summary table collaboration_fizz(sq_data, hrvar = "Organization", return = "table")
Provides a week by week view of collaboration time, visualised as line charts. By default returns a line chart for collaboration hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.
collaboration_line(data, hrvar = "Organization", mingroup = 5, return = "plot") collab_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
collaboration_line(data, hrvar = "Organization", mingroup = 5, return = "plot") collab_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted line plot for the metric.
"table"
: data frame. A summary table for the metric.
The metric Collaboration_hours
is used in the calculations. Please ensure
that your query contains a metric with the exact same name.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Collaboration:
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
# Return a line plot collaboration_line(sq_data, hrvar = "LevelDesignation") # Return summary table collaboration_line(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a line plot collaboration_line(sq_data, hrvar = "LevelDesignation") # Return summary table collaboration_line(sq_data, hrvar = "LevelDesignation", return = "table")
This function scans a standard query output for groups with high levels of 'Weekly Digital Collaboration'. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by hours of digital collaboration.
collaboration_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" ) collab_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" )
collaboration_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" ) collab_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
mode |
String to specify calculation mode. Must be either:
|
plot_mode |
Numeric vector to determine which plot mode to return. Must
be either
|
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric Collaboration_hours
.
See create_rank()
for applying the same analysis to a different metric.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bubble plot where the x-axis represents the
metric, the y-axis represents the HR attributes, and the size of the
bubbles represent the size of the organizations. Note that there is no
plot output if mode
is set to "combine"
.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Collaboration:
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_sum()
,
collaboration_trend()
# Return rank table collaboration_rank( data = sq_data, return = "table" ) # Return plot collaboration_rank( data = sq_data, return = "plot" )
# Return rank table collaboration_rank( data = sq_data, return = "table" ) # Return plot collaboration_rank( data = sq_data, return = "plot" )
The function generates an interactive HTML report using Standard Person Query data as an input. The report contains a series of summary analysis and visualisations relating to key collaboration metrics,including email and meeting hours.
collaboration_report( data, hrvar = "AUTO", mingroup = 5, path = "collaboration report", timestamp = TRUE )
collaboration_report( data, hrvar = "AUTO", mingroup = 5, path = "collaboration report", timestamp = TRUE )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
path |
Pass the file path and the desired file name, excluding the file
extension. For example, |
timestamp |
Logical vector specifying whether to include a timestamp in
the file name. Defaults to |
An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.
Other Reports:
IV_report()
,
capacity_report()
,
coaching_report()
,
connectivity_report()
,
generate_report()
,
meeting_tm_report()
,
read_preamble()
,
subject_validate_report()
,
validation_report()
,
workpatterns_report()
Provides an overview analysis of 'Weekly Digital Collaboration'. Returns a stacked bar plot of Email and Meeting Hours by default. Additional options available to return a summary table.
collaboration_sum(data, hrvar = "Organization", mingroup = 5, return = "plot") collab_sum(data, hrvar = "Organization", mingroup = 5, return = "plot") collaboration_summary( data, hrvar = "Organization", mingroup = 5, return = "plot" ) collab_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")
collaboration_sum(data, hrvar = "Organization", mingroup = 5, return = "plot") collab_sum(data, hrvar = "Organization", mingroup = 5, return = "plot") collaboration_summary( data, hrvar = "Organization", mingroup = 5, return = "plot" ) collab_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table". |
Uses the metrics Meeting_hours
, Email_hours
, Unscheduled_Call_hours
,
and Instant_Message_hours
.
Returns a 'ggplot' object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Collaboration:
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_trend()
Provides a week by week view of collaboration time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.
collaboration_trend( data, hrvar = "Organization", mingroup = 5, return = "plot" )
collaboration_trend( data, hrvar = "Organization", mingroup = 5, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
Character vector specifying what to return, defaults to
|
Returns a 'ggplot' object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
The metric Collaboration_hours
is used in the calculations. Please ensure
that your query contains a metric with the exact same name.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Collaboration:
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
Takes in an Hourly Collaboration Data, and for each hour sums and aggregates
the signals (e.g.Emails_sent
and IMs_sent
) in Signals_sent
. This is an
internal function used in the Working Patterns functions.
combine_signals(data, hr, signals = c("Emails_sent", "IMs_sent"))
combine_signals(data, hr, signals = c("Emails_sent", "IMs_sent"))
data |
Hourly Collaboration query containing signal variables (e.g.
|
hr |
Numeric value between 0 to 23 to iterate through |
signals |
Character vector for specifying which signal types to combine.
Defaults to |
combine_signals
uses string matching to aggregate columns.
Returns a numeric vector that represents the sum of signals sent for a given hour.
Other Support:
camel_clean()
,
check_inputs()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
# Demo using simulated variables sim_data <- data.frame(Emails_sent_09_10 = sample(1:5, size = 10, replace = TRUE), Unscheduled_calls_09_10 = sample(1:5, size = 10, replace = TRUE)) combine_signals(sim_data, hr = 9, signals = c("Emails_sent", "Unscheduled_calls"))
# Demo using simulated variables sim_data <- data.frame(Emails_sent_09_10 = sample(1:5, size = 10, replace = TRUE), Unscheduled_calls_09_10 = sample(1:5, size = 10, replace = TRUE)) combine_signals(sim_data, hr = 9, signals = c("Emails_sent", "Unscheduled_calls"))
Takes a numeric value and returns a character value
which is rounded to the whole number, and adds a comma
separator at the thousands. A convenient wrapper function
around round()
and format()
.
comma(x)
comma(x)
x |
A numeric value |
Returns a formatted string.
The function generates an interactive HTML report using Standard Person Query
data as an input. The report contains a series of summary analysis and
visualisations relating to key connectivity metrics, including
external/internal network size vs breadth
(Networking_outside_organization
, Networking_outside_domain
).
connectivity_report( data, hrvar = "LevelDesignation", mingroup = 5, path = "connectivity report", timestamp = TRUE )
connectivity_report( data, hrvar = "LevelDesignation", mingroup = 5, path = "connectivity report", timestamp = TRUE )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
path |
Pass the file path and the desired file name, excluding the file
extension. For example, |
timestamp |
Logical vector specifying whether to include a timestamp in
the file name. Defaults to |
An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.
Other Reports:
IV_report()
,
capacity_report()
,
coaching_report()
,
collaboration_report()
,
generate_report()
,
meeting_tm_report()
,
read_preamble()
,
subject_validate_report()
,
validation_report()
,
workpatterns_report()
This is a pipe-optimised function, that feeds into wpa::export()
,
but can be used as a stand-alone function.
Based on the original function from https://github.com/martinctc/surveytoolbox.
copy_df(x, row.names = FALSE, col.names = TRUE, quietly = FALSE, ...)
copy_df(x, row.names = FALSE, col.names = TRUE, quietly = FALSE, ...)
x |
Data frame to be passed through. Cannot contain list-columns or nested data frames. |
row.names |
A logical vector for specifying whether to allow row names.
Defaults to |
col.names |
A logical vector for specifying whether to allow column
names. Defaults to |
quietly |
Set this to TRUE to not print data frame on console |
... |
Additional arguments for write.table(). |
Copies a data frame to the clipboard with no return value.
Other Import and Export:
create_dt()
,
export()
,
import_to_fst()
,
import_wpa()
,
standardise_pq()
Provides an overview analysis of a selected metric by calculating a mean per metric. Returns a bar plot showing the average of a selected metric by default. Additional options available to return a summary table.
create_bar( data, metric, hrvar = "Organization", mingroup = 5, return = "plot", bar_colour = "default", na.rm = FALSE, percent = FALSE, plot_title = us_to_space(metric), plot_subtitle = paste("Average by", tolower(camel_clean(hrvar))), legend_lab = NULL, rank = "descending", xlim = NULL, text_just = 0.5, text_colour = "#FFFFFF" )
create_bar( data, metric, hrvar = "Organization", mingroup = 5, return = "plot", bar_colour = "default", na.rm = FALSE, percent = FALSE, plot_title = us_to_space(metric), plot_subtitle = paste("Average by", tolower(camel_clean(hrvar))), legend_lab = NULL, rank = "descending", xlim = NULL, text_just = 0.5, text_colour = "#FFFFFF" )
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
# Return a ggplot bar chart create_bar(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation") # Change bar colour create_bar(sq_data, metric = "After_hours_collaboration_hours", bar_colour = "alert") # Custom data label positions and formatting sq_data %>% create_bar( metric = "Meetings", text_just = 1.1, text_colour = "black", xlim = 20) # Return a summary table create_bar(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", return = "table")
# Return a ggplot bar chart create_bar(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation") # Change bar colour create_bar(sq_data, metric = "After_hours_collaboration_hours", bar_colour = "alert") # Custom data label positions and formatting sq_data %>% create_bar( metric = "Meetings", text_just = 1.1, text_colour = "black", xlim = 20) # Return a summary table create_bar(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", return = "table")
This function creates a bar chart directly from the aggregated / summarised
data. Unlike create_bar()
which performs a person-level aggregation, there
is no calculation for create_bar_asis()
and the values are rendered as they
are passed into the function.
create_bar_asis( data, group_var, bar_var, title = NULL, subtitle = NULL, caption = NULL, ylab = group_var, xlab = bar_var, percent = FALSE, bar_colour = "default", rounding = 1 )
create_bar_asis( data, group_var, bar_var, title = NULL, subtitle = NULL, caption = NULL, ylab = group_var, xlab = bar_var, percent = FALSE, bar_colour = "default", rounding = 1 )
data |
Plotting data as a data frame. |
group_var |
String containing name of variable for the group. |
bar_var |
String containing name of variable representing the value of the bars. |
title |
Title of the plot. |
subtitle |
Subtitle of the plot. |
caption |
Caption of the plot. |
ylab |
Y-axis label for the plot (group axis) |
xlab |
X-axis label of the plot (bar axis). |
percent |
Logical value to determine whether to show labels as
percentage signs. Defaults to |
bar_colour |
String to specify colour to use for bars.
In-built accepted values include "default" (default), "alert" (red), and
"darkblue". Otherwise, hex codes are also accepted. You can also supply
RGB values via |
rounding |
Numeric value to specify number of digits to show in data labels |
'ggplot' object. A horizontal bar plot.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
# Creating a custom bar plot without mean aggregation library(dplyr) sq_data %>% group_by(Organization) %>% summarise(across(.cols = Meeting_hours, .fns = ~sum(., na.rm = TRUE))) %>% create_bar_asis(group_var = "Organization", bar_var = "Meeting_hours", title = "Total Meeting Hours over period", subtitle = "By Organization", caption = extract_date_range(sq_data, return = "text"), bar_colour = "darkblue", rounding = 0) library(dplyr) # Summarise Non-person-average median `Emails_sent` med_df <- sq_data %>% group_by(Organization) %>% summarise(Emails_sent_median = median(Emails_sent)) med_df %>% create_bar_asis( group_var = "Organization", bar_var = "Emails_sent_median", title = "Median Emails Sent by Organization", subtitle = "Person Averaging Not Applied", bar_colour = "darkblue", caption = extract_date_range(sq_data, return = "text") )
# Creating a custom bar plot without mean aggregation library(dplyr) sq_data %>% group_by(Organization) %>% summarise(across(.cols = Meeting_hours, .fns = ~sum(., na.rm = TRUE))) %>% create_bar_asis(group_var = "Organization", bar_var = "Meeting_hours", title = "Total Meeting Hours over period", subtitle = "By Organization", caption = extract_date_range(sq_data, return = "text"), bar_colour = "darkblue", rounding = 0) library(dplyr) # Summarise Non-person-average median `Emails_sent` med_df <- sq_data %>% group_by(Organization) %>% summarise(Emails_sent_median = median(Emails_sent)) med_df %>% create_bar_asis( group_var = "Organization", bar_var = "Emails_sent_median", title = "Median Emails Sent by Organization", subtitle = "Person Averaging Not Applied", bar_colour = "darkblue", caption = extract_date_range(sq_data, return = "text") )
Analyzes a selected metric and returns a box plot by default. Additional options available to return a table with distribution elements.
create_boxplot( data, metric, hrvar = "Organization", mingroup = 5, return = "plot" )
create_boxplot( data, metric, hrvar = "Organization", mingroup = 5, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
This is a general purpose function that powers all the functions in the package that produce box plots.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A box plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
# Create a fizzy plot for Work Week Span by Level Designation create_boxplot(sq_data, metric = "Workweek_span", hrvar = "LevelDesignation", return = "plot") # Create a summary statistics table for Work Week Span by Organization create_boxplot(sq_data, metric = "Workweek_span", hrvar = "Organization", return = "table") # Create a fizzy plot for Collaboration Hours by Level Designation create_boxplot(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", return = "plot")
# Create a fizzy plot for Work Week Span by Level Designation create_boxplot(sq_data, metric = "Workweek_span", hrvar = "LevelDesignation", return = "plot") # Create a summary statistics table for Work Week Span by Organization create_boxplot(sq_data, metric = "Workweek_span", hrvar = "Organization", return = "table") # Create a fizzy plot for Collaboration Hours by Level Designation create_boxplot(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", return = "plot")
Returns a bubble plot of two selected metrics, using size to map the number of employees.
create_bubble( data, metric_x, metric_y, hrvar = "Organization", mingroup = 5, return = "plot", bubble_size = c(1, 10) )
create_bubble( data, metric_x, metric_y, hrvar = "Organization", mingroup = 5, return = "plot", bubble_size = c(1, 10) )
data |
A Standard Person Query dataset in the form of a data frame. |
metric_x |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
metric_y |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation" |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the
following strings: - |
bubble_size |
A numeric vector of length two to specify the size range of the bubbles |
This is a general purpose function that powers all the functions in the package that produce bubble plots.
A different output is returned depending on the value passed to the
return
argument:
"plot"
: 'ggplot' object. A bubble plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
create_bubble(sq_data, "Internal_network_size", "External_network_size", "Organization") create_bubble( sq_data, "Generated_workload_call_hours", "Generated_workload_email_hours", "Organization", mingroup = 100, return = "plot" )
create_bubble(sq_data, "Internal_network_size", "External_network_size", "Organization") create_bubble( sq_data, "Generated_workload_call_hours", "Generated_workload_email_hours", "Organization", mingroup = 100, return = "plot" )
Provides an analysis of the distribution of a selected metric. Returns a faceted density plot by default. Additional options available to return the underlying frequency table.
create_density( data, metric, hrvar = "Organization", mingroup = 5, ncol = NULL, return = "plot" )
create_density( data, metric, hrvar = "Organization", mingroup = 5, ncol = NULL, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
String containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
ncol |
Numeric value setting the number of columns on the plot. Defaults
to |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted density plot for the metric.
"table"
: data frame. A summary table for the metric.
"data"
: data frame. Data with calculated person averages.
"frequency
: list of data frames. Each data frame contains the
frequencies used in each panel of the plotted histogram.
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
# Return plot for whole organization create_density(sq_data, metric = "Collaboration_hours", hrvar = NULL) # Return plot create_density(sq_data, metric = "Collaboration_hours", hrvar = "Organization") # Return plot but coerce plot to two columns create_density(sq_data, metric = "Collaboration_hours", hrvar = "Organization", ncol = 2) # Return summary table create_density(sq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")
# Return plot for whole organization create_density(sq_data, metric = "Collaboration_hours", hrvar = NULL) # Return plot create_density(sq_data, metric = "Collaboration_hours", hrvar = "Organization") # Return plot but coerce plot to two columns create_density(sq_data, metric = "Collaboration_hours", hrvar = "Organization", ncol = 2) # Return summary table create_density(sq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")
Provides an analysis of the distribution of a selected metric. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
create_dist( data, metric, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(15, 20, 25), dist_colours = c("#facebc", "#fcf0eb", "#b4d5dd", "#bfe5ee"), unit = "hours", lbound = 0, ubound = 100, sort_by = NULL, labels = NULL )
create_dist( data, metric, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(15, 20, 25), dist_colours = c("#facebc", "#fcf0eb", "#b4d5dd", "#bfe5ee"), unit = "hours", lbound = 0, ubound = 100, sort_by = NULL, labels = NULL )
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
String containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
cut |
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20) |
dist_colours |
A character vector of length four to specify colour codes for the stacked bars. |
unit |
String to specify what unit to use. This defaults to |
lbound |
Numeric. Specifies the lower bound (inclusive) value for the minimum label. Defaults to 0. |
ubound |
Numeric. Specifies the upper bound (inclusive) value for the maximum label. Defaults to 100. |
sort_by |
String to specify the bucket label to sort by. Defaults to
|
labels |
Character vector to override labels for the created categorical variables. Must be a named vector - see examples. |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
# Return plot create_dist(sq_data, metric = "Collaboration_hours", hrvar = "Organization") # Return summary table create_dist(sq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table") # Use custom labels by providing a label vector eh_labels <- c( "Fewer than fifteen" = "< 15 hours", "Between fifteen and twenty" = "15 - 20 hours", "Between twenty and twenty-five" = "20 - 25 hours", "More than twenty-five" = "25+ hours" ) sq_data %>% create_dist(metric = "Email_hours", labels = eh_labels, return = "plot") # Sort by a category sq_data %>% create_dist(metric = "Collaboration_hours", sort_by = "25+ hours")
# Return plot create_dist(sq_data, metric = "Collaboration_hours", hrvar = "Organization") # Return summary table create_dist(sq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table") # Use custom labels by providing a label vector eh_labels <- c( "Fewer than fifteen" = "< 15 hours", "Between fifteen and twenty" = "15 - 20 hours", "Between twenty and twenty-five" = "20 - 25 hours", "More than twenty-five" = "25+ hours" ) sq_data %>% create_dist(metric = "Email_hours", labels = eh_labels, return = "plot") # Sort by a category sq_data %>% create_dist(metric = "Collaboration_hours", sort_by = "25+ hours")
See https://martinctc.github.io/blog/vignette-downloadable-tables-in-rmarkdown-with-the-dt-package/ for more.
create_dt(x, rounding = 1, freeze = 2, percent = FALSE)
create_dt(x, rounding = 1, freeze = 2, percent = FALSE)
x |
Data frame to be passed through. |
rounding |
Numeric vector to specify the number of decimal points to display |
freeze |
Number of columns from the left to 'freeze'. Defaults to 2, which includes the row number column. |
percent |
Logical value specifying whether to display numeric columns as percentages. |
Returns an HTML widget displaying rectangular data.
Other Import and Export:
copy_df()
,
export()
,
import_to_fst()
,
import_wpa()
,
standardise_pq()
out_tb <- hrvar_count(sq_data, hrvar = "Organization", return = "table") create_dt(out_tb)
out_tb <- hrvar_count(sq_data, hrvar = "Organization", return = "table") create_dt(out_tb)
Analyzes a selected metric and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.
create_fizz( data, metric, hrvar = "Organization", mingroup = 5, return = "plot" )
create_fizz( data, metric, hrvar = "Organization", mingroup = 5, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
Character string containing the name of the metric,
e.g. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
This is a general purpose function that powers all the functions in the package that produce 'fizzy drink' / jittered scatter plots.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A jittered scatter plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
# Create a fizzy plot for Work Week Span by Level Designation create_fizz(sq_data, metric = "Workweek_span", hrvar = "LevelDesignation", return = "plot") # Create a summary statistics table for Work Week Span by Organization create_fizz(sq_data, metric = "Workweek_span", hrvar = "Organization", return = "table") # Create a fizzy plot for Collaboration Hours by Level Designation create_fizz(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", return = "plot")
# Create a fizzy plot for Work Week Span by Level Designation create_fizz(sq_data, metric = "Workweek_span", hrvar = "LevelDesignation", return = "plot") # Create a summary statistics table for Work Week Span by Organization create_fizz(sq_data, metric = "Workweek_span", hrvar = "Organization", return = "table") # Create a fizzy plot for Collaboration Hours by Level Designation create_fizz(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", return = "plot")
Provides an analysis of the distribution of a selected metric. Returns a faceted histogram by default. Additional options available to return the underlying frequency table.
create_hist( data, metric, hrvar = "Organization", mingroup = 5, binwidth = 1, ncol = NULL, return = "plot" )
create_hist( data, metric, hrvar = "Organization", mingroup = 5, binwidth = 1, ncol = NULL, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
String containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
binwidth |
Numeric value for setting |
ncol |
Numeric value setting the number of columns on the plot. Defaults
to |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted histogram for the metric.
"table"
: data frame. A summary table for the metric.
"data"
: data frame. Data with calculated person averages.
"frequency
: list of data frames. Each data frame contains the
frequencies used in each panel of the plotted histogram.
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
# Return plot for whole organization create_hist(sq_data, metric = "Collaboration_hours", hrvar = NULL) # Return plot create_hist(sq_data, metric = "Collaboration_hours", hrvar = "Organization") # Return plot but coerce plot to two columns create_hist(sq_data, metric = "Collaboration_hours", hrvar = "Organization", ncol = 2) # Return summary table create_hist(sq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")
# Return plot for whole organization create_hist(sq_data, metric = "Collaboration_hours", hrvar = NULL) # Return plot create_hist(sq_data, metric = "Collaboration_hours", hrvar = "Organization") # Return plot but coerce plot to two columns create_hist(sq_data, metric = "Collaboration_hours", hrvar = "Organization", ncol = 2) # Return summary table create_hist(sq_data, metric = "Collaboration_hours", hrvar = "Organization", return = "table")
An incidence analysis is generated, with each value in the table reflecting
the proportion of the population that is above or below a threshold for a
specified metric. There is an option to only provide a single hrvar
in
which a bar plot is generated, or two hrvar
values where an incidence table
(heatmap) is generated.
create_inc( data, metric, hrvar, mingroup = 5, threshold, position, return = "plot" ) create_incidence( data, metric, hrvar, mingroup = 5, threshold, position, return = "plot" )
create_inc( data, metric, hrvar, mingroup = 5, threshold, position, return = "plot" ) create_incidence( data, metric, hrvar, mingroup = 5, threshold, position, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
Character vector of at most length 2 containing the name of the HR Variable by which to split metrics. |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
threshold |
Numeric value specifying the threshold. |
position |
String containing the below valid values:
|
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A heat map.
"table"
: data frame. A summary table.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
# Only a single HR attribute create_inc( data = sq_data, metric = "After_hours_collaboration_hours", hrvar = "Organization", threshold = 4, position = "above" ) # Two HR attributes create_inc( data = sq_data, metric = "Collaboration_hours", hrvar = c("LevelDesignation", "Organization"), threshold = 20, position = "below" )
# Only a single HR attribute create_inc( data = sq_data, metric = "After_hours_collaboration_hours", hrvar = "Organization", threshold = 4, position = "above" ) # Two HR attributes create_inc( data = sq_data, metric = "Collaboration_hours", hrvar = c("LevelDesignation", "Organization"), threshold = 20, position = "below" )
r lifecycle::badge('experimental')
This function implements ITSA method described in the paper 'Conducting interrupted time-series analysis for single- and multiple-group comparisons', Ariel Linden, The Stata Journal (2015), 15, Number 2, pp. 480-500
This function further requires the installation of 'sandwich', 'portes', and
'lmtest' in order to work. These packages can be installed from CRAN using
install.packages()
.
create_ITSA( data, before_start = min(as.Date(data$Date, "%m/%d/%Y")), before_end, after_start, after_end = max(as.Date(data$Date, "%m/%d/%Y")), ac_lags_max = 7, return = "table" )
create_ITSA( data, before_start = min(as.Date(data$Date, "%m/%d/%Y")), before_end, after_start, after_end = max(as.Date(data$Date, "%m/%d/%Y")), ac_lags_max = 7, return = "table" )
data |
Person Query as a dataframe including date column named |
before_start |
Start date of 'before' time period in MM/DD/YYYY format as character type. Before time period is the period before the intervention (e.g. training program, re-org, shift to remote work) occurs and bounded by before_start and before_end parameters. Longer period increases likelihood of achieving more statistically significant results. Defaults to earliest date in dataset. |
before_end |
End date of 'before' time period in MM/DD/YYYY format as character type. |
after_start |
Start date of 'after' time period in MM/DD/YYYY format as character type. After time period is the period after the intervention occurs and bounded by after_start and after_end parameters. Longer period increases likelihood of achieving more statistically significant results. Defaults to date after before_end. |
after_end |
End date of 'after' time period in MM/DD/YYYY format as character type. Defaults to latest date in dataset. |
ac_lags_max |
maximum lag for autocorrelation test. Default is 7 |
return |
String specifying what output to return. Defaults to "table". Valid return options include:
|
This function uses the additional package dependencies 'sandwich' and 'lmtest'. Please install these separately from CRAN prior to running the function.
As of May 2022, the 'portes' package was archived from CRAN. The dependency
has since been removed and dependent functions Ljungbox()
incorporated into
the wpa package.
Aleksey Ashikhmin [email protected]
Other Flexible Input:
period_change()
# Returns summary table create_ITSA( data = sq_data, before_start = "12/15/2019", before_end = "12/29/2019", after_start = "1/5/2020", after_end = "1/26/2020", ac_lags_max = 7, return = "table") # Returns list of plots plot_list <- create_ITSA( data = sq_data, before_start = "12/15/2019", before_end = "12/29/2019", after_start = "1/5/2020", after_end = "1/26/2020", ac_lags_max = 7, return = 'plot') # Extract a plot as an example plot_list$Workweek_span
# Returns summary table create_ITSA( data = sq_data, before_start = "12/15/2019", before_end = "12/29/2019", after_start = "1/5/2020", after_end = "1/26/2020", ac_lags_max = 7, return = "table") # Returns list of plots plot_list <- create_ITSA( data = sq_data, before_start = "12/15/2019", before_end = "12/29/2019", after_start = "1/5/2020", after_end = "1/26/2020", ac_lags_max = 7, return = 'plot') # Extract a plot as an example plot_list$Workweek_span
Specify an outcome variable and return IV outputs. All numeric variables in the dataset are used as predictor variables.
create_IV( data, predictors = NULL, outcome, bins = 5, siglevel = 0.05, exc_sig = FALSE, return = "plot" )
create_IV( data, predictors = NULL, outcome, bins = 5, siglevel = 0.05, exc_sig = FALSE, return = "plot" )
data |
A Person Query dataset in the form of a data frame. |
predictors |
A character vector specifying the columns to be used as predictors. Defaults to NULL, where all numeric vectors in the data will be used as predictors. |
outcome |
A string specifying a binary variable, i.e. can only contain the values 1 or 0. |
bins |
Number of bins to use, defaults to 5. |
siglevel |
Significance level to use in comparing populations for the outcomes, defaults to 0.05 |
exc_sig |
Logical value determining whether to exclude values where the
p-value lies below what is set at |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bar plot showing the IV value of the top
(maximum 12) variables.
"summary"
: data frame. A summary table for the metric.
"list"
: list. A list of outputs for all the input variables.
"plot-WOE"
: A list of 'ggplot' objects that show the WOE for each
predictor used in the model.
"IV"
returns a list object which mirrors the return
in Information::create_infotables()
.
Other Variable Association:
IV_by_period()
,
IV_report()
,
plot_WOE()
Other Information Value:
IV_by_period()
,
IV_report()
,
plot_WOE()
# Return a summary table of IV sq_data %>% dplyr::mutate(X = ifelse(Workweek_span > 40, 1, 0)) %>% create_IV(outcome = "X", predictors = c("Email_hours", "Meeting_hours", "Instant_Message_hours"), return = "plot") # Return summary sq_data %>% dplyr::mutate(X = ifelse(Collaboration_hours > 10, 1, 0)) %>% create_IV(outcome = "X", predictors = c("Email_hours", "Meeting_hours"), return = "summary")
# Return a summary table of IV sq_data %>% dplyr::mutate(X = ifelse(Workweek_span > 40, 1, 0)) %>% create_IV(outcome = "X", predictors = c("Email_hours", "Meeting_hours", "Instant_Message_hours"), return = "plot") # Return summary sq_data %>% dplyr::mutate(X = ifelse(Collaboration_hours > 10, 1, 0)) %>% create_IV(outcome = "X", predictors = c("Email_hours", "Meeting_hours"), return = "summary")
Provides a week by week view of a selected metric, visualised as line charts. By default returns a line chart for the defined metric, with a separate panel per value in the HR attribute. Additional options available to return a summary table.
create_line( data, metric, hrvar = "Organization", mingroup = 5, ncol = NULL, return = "plot" )
create_line( data, metric, hrvar = "Organization", mingroup = 5, ncol = NULL, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
ncol |
Numeric value setting the number of columns on the plot. Defaults
to |
return |
String specifying what to return. This must be one of the following strings:
See |
This is a general purpose function that powers all the functions in the package that produce faceted line plots.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted line plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
Other Time-series:
IV_by_period()
,
create_line_asis()
,
create_period_scatter()
,
create_trend()
,
period_change()
# Return plot of Email Hours sq_data %>% create_line(metric = "Email_hours", return = "plot") # Return plot of Collaboration Hours sq_data %>% create_line(metric = "Collaboration_hours", return = "plot") # Return plot but coerce plot to two columns sq_data %>% create_line( metric = "Collaboration_hours", hrvar = "Organization", ncol = 2 ) # Return plot of Work week span and cut by `LevelDesignation` sq_data %>% create_line(metric = "Workweek_span", hrvar = "LevelDesignation")
# Return plot of Email Hours sq_data %>% create_line(metric = "Email_hours", return = "plot") # Return plot of Collaboration Hours sq_data %>% create_line(metric = "Collaboration_hours", return = "plot") # Return plot but coerce plot to two columns sq_data %>% create_line( metric = "Collaboration_hours", hrvar = "Organization", ncol = 2 ) # Return plot of Work week span and cut by `LevelDesignation` sq_data %>% create_line(metric = "Workweek_span", hrvar = "LevelDesignation")
This function creates a line chart directly from the aggregated / summarised data.
Unlike create_line()
which performs a person-level aggregation, there is no
calculation for create_line_asis()
and the values are rendered as they are passed
into the function. The only requirement is that a date_var
is provided for the x-axis.
create_line_asis( data, date_var = "Date", metric, title = NULL, subtitle = NULL, caption = NULL, ylab = date_var, xlab = metric, line_colour = rgb2hex(0, 120, 212) )
create_line_asis( data, date_var = "Date", metric, title = NULL, subtitle = NULL, caption = NULL, ylab = date_var, xlab = metric, line_colour = rgb2hex(0, 120, 212) )
data |
Plotting data as a data frame. |
date_var |
String containing name of variable for the horizontal axis. |
metric |
String containing name of variable representing the line. |
title |
Title of the plot. |
subtitle |
Subtitle of the plot. |
caption |
Caption of the plot. |
ylab |
Y-axis label for the plot (group axis) |
xlab |
X-axis label of the plot (bar axis). |
line_colour |
String to specify colour to use for the line.
Hex codes are accepted. You can also supply
RGB values via |
Returns a 'ggplot' object representing a line plot.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
Other Time-series:
IV_by_period()
,
create_line()
,
create_period_scatter()
,
create_trend()
,
period_change()
library(dplyr) # Median `Emails_sent` grouped by `Date` # Without Person Averaging med_df <- sq_data %>% group_by(Date) %>% summarise(Emails_sent_median = median(Emails_sent)) med_df %>% create_line_asis( date_var = "Date", metric = "Emails_sent_median", title = "Median Emails Sent", subtitle = "Person Averaging Not Applied", caption = extract_date_range(sq_data, return = "text") )
library(dplyr) # Median `Emails_sent` grouped by `Date` # Without Person Averaging med_df <- sq_data %>% group_by(Date) %>% summarise(Emails_sent_median = median(Emails_sent)) med_df %>% create_line_asis( date_var = "Date", metric = "Emails_sent_median", title = "Median Emails Sent", subtitle = "Person Averaging Not Applied", caption = extract_date_range(sq_data, return = "text") )
Returns two side-by-side scatter plots representing two selected metrics, using colour to map an HR attribute and size to represent number of employees. Returns a faceted scatter plot by default, with additional options to return a summary table.
create_period_scatter( data, hrvar = "Organization", metric_x = "Multitasking_meeting_hours", metric_y = "Meeting_hours", before_start = min(as.Date(data$Date, "%m/%d/%Y")), before_end, after_start = as.Date(before_end) + 1, after_end = max(as.Date(data$Date, "%m/%d/%Y")), before_label = "Period 1", after_label = "Period 2", mingroup = 5, return = "plot" )
create_period_scatter( data, hrvar = "Organization", metric_x = "Multitasking_meeting_hours", metric_y = "Meeting_hours", before_start = min(as.Date(data$Date, "%m/%d/%Y")), before_end, after_start = as.Date(before_end) + 1, after_end = max(as.Date(data$Date, "%m/%d/%Y")), before_label = "Period 1", after_label = "Period 2", mingroup = 5, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
HR Variable by which to split metrics. Accepts a character vector, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation" |
metric_x |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
metric_y |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
before_start |
Start date of "before" time period in YYYY-MM-DD |
before_end |
End date of "before" time period in YYYY-MM-DD |
after_start |
Start date of "after" time period in YYYY-MM-DD |
after_end |
End date of "after" time period in YYYY-MM-DD |
before_label |
String to specify a label for the "before" period. Defaults to "Period 1". |
after_label |
String to specify a label for the "after" period. Defaults to "Period 2". |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table". |
This is a general purpose function that powers all the functions in the package that produce faceted scatter plots.
Returns a 'ggplot' object showing two scatter plots side by side representing the two periods.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
Other Time-series:
IV_by_period()
,
create_line()
,
create_line_asis()
,
create_trend()
,
period_change()
# Return plot create_period_scatter(sq_data, hrvar = "LevelDesignation", before_start = "2019-12-15", before_end = "2019-12-29", after_start = "2020-01-05", after_end = "2020-01-26") # Return a summary table create_period_scatter(sq_data, before_end = "2019-12-31", return = "table")
# Return plot create_period_scatter(sq_data, hrvar = "LevelDesignation", before_start = "2019-12-15", before_end = "2019-12-29", after_start = "2020-01-05", after_end = "2020-01-26") # Return a summary table create_period_scatter(sq_data, before_end = "2019-12-31", return = "table")
This function scans a standard Person query output for groups with high levels of a given Viva Insights Metric. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by the specified metric.
create_rank( data, metric, hrvar = extract_hr(data, exclude_constants = TRUE), mingroup = 5, return = "table", mode = "simple", plot_mode = 1 )
create_rank( data, metric, hrvar = extract_hr(data, exclude_constants = TRUE), mingroup = 5, return = "table", mode = "simple", plot_mode = 1 )
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
mode |
String to specify calculation mode. Must be either:
|
plot_mode |
Numeric vector to determine which plot mode to return. Must
be either
|
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bubble plot where the x-axis represents the
metric, the y-axis represents the HR attributes, and the size of the
bubbles represent the size of the organizations. Note that there is no
plot output if mode
is set to "combine"
.
"table"
: data frame. A summary table for the metric.
Carlos Morales Torrado [email protected]
Martin Chan [email protected]
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
sq_data_small <- dplyr::slice_sample(sq_data, prop = 0.1) # Plot mode 1 - show top and bottom five groups create_rank( data = sq_data_small, hrvar = c("FunctionType", "LevelDesignation"), metric = "Emails_sent", return = "plot", plot_mode = 1 ) # Plot mode 2 - show top and bottom groups per HR variable create_rank( data = sq_data_small, hrvar = c("FunctionType", "LevelDesignation"), metric = "Emails_sent", return = "plot", plot_mode = 2 ) # Return a table create_rank( data = sq_data_small, metric = "Emails_sent", return = "table" ) # Return a table - combination mode create_rank( data = sq_data_small, metric = "Emails_sent", mode = "combine", return = "table" )
sq_data_small <- dplyr::slice_sample(sq_data, prop = 0.1) # Plot mode 1 - show top and bottom five groups create_rank( data = sq_data_small, hrvar = c("FunctionType", "LevelDesignation"), metric = "Emails_sent", return = "plot", plot_mode = 1 ) # Plot mode 2 - show top and bottom groups per HR variable create_rank( data = sq_data_small, hrvar = c("FunctionType", "LevelDesignation"), metric = "Emails_sent", return = "plot", plot_mode = 2 ) # Return a table create_rank( data = sq_data_small, metric = "Emails_sent", return = "table" ) # Return a table - combination mode create_rank( data = sq_data_small, metric = "Emails_sent", mode = "combine", return = "table" )
Create pairwise combinations of HR variables and compute an average of a specified advanced insights metric.
create_rank_combine(data, hrvar = extract_hr(data), metric, mingroup = 5)
create_rank_combine(data, hrvar = extract_hr(data), metric, mingroup = 5)
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
metric |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
This function is called when the mode
argument in create_rank()
is
specified as "combine"
.
Data frame containing the following variables:
hrvar
: placeholder column that denotes the output as "Combined"
.
group
: pairwise combinations of HR attributes with the HR attribute
in square brackets followed by the value of the HR attribute.
Name of the metric (as passed to metric
)
n
# Use a small sample for faster runtime sq_data_small <- dplyr::slice_sample(sq_data, prop = 0.1) create_rank_combine( data = sq_data_small, metric = "Email_hours" )
# Use a small sample for faster runtime sq_data_small <- dplyr::slice_sample(sq_data, prop = 0.1) create_rank_combine( data = sq_data_small, metric = "Email_hours" )
Create a 'networkD3' style sankey chart based on a long count table with two variables. The input data should have three columns, where each row is a unique group:
Variable 1
Variable 2
Count
create_sankey(data, var1, var2, count = "n")
create_sankey(data, var1, var2, count = "n")
data |
Data frame of the long count table. |
var1 |
String containing the name of the variable to be shown on the left. |
var2 |
String containing the name of the variable to be shown on the right. |
count |
String containing the name of the count variable. |
A 'sankeyNetwork' and 'htmlwidget' object containing a two-tier
sankey plot. The output can be saved locally with
htmlwidgets::saveWidget()
.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
sq_data %>% dplyr::count(Organization, FunctionType) %>% create_sankey(var1 = "Organization", var2 = "FunctionType")
sq_data %>% dplyr::count(Organization, FunctionType) %>% create_sankey(var1 = "Organization", var2 = "FunctionType")
Returns a scatter plot of two selected metrics, using colour to map an HR attribute. Returns a scatter plot by default, with additional options to return a summary table.
create_scatter( data, metric_x, metric_y, hrvar = "Organization", mingroup = 5, return = "plot" )
create_scatter( data, metric_x, metric_y, hrvar = "Organization", mingroup = 5, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
metric_x |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
metric_y |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation" |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table". |
This is a general purpose function that powers all the functions in the package that produce scatter plots.
Returns a 'ggplot' object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
period_change()
create_scatter(sq_data, "Internal_network_size", "External_network_size", "Organization") create_scatter(sq_data, "Generated_workload_call_hours", "Generated_workload_email_hours", "Organization", mingroup = 100, return = "plot")
create_scatter(sq_data, "Internal_network_size", "External_network_size", "Organization") create_scatter(sq_data, "Generated_workload_call_hours", "Generated_workload_email_hours", "Organization", mingroup = 100, return = "plot")
Creates a sum total calculation using selected metrics, where the typical use case is to create different definitions of collaboration hours. Returns a stacked bar plot by default. Additional options available to return a summary table.
create_stacked( data, hrvar = "Organization", metrics = c("Meeting_hours", "Email_hours"), mingroup = 5, return = "plot", stack_colours = c("#1d627e", "#34b1e2", "#b4d5dd", "#adc0cb"), percent = FALSE, plot_title = "Collaboration Hours", plot_subtitle = paste("Average by", tolower(camel_clean(hrvar))), legend_lab = NULL, rank = "descending", xlim = NULL, text_just = 0.5, text_colour = "#FFFFFF" )
create_stacked( data, hrvar = "Organization", metrics = c("Meeting_hours", "Email_hours"), mingroup = 5, return = "plot", stack_colours = c("#1d627e", "#34b1e2", "#b4d5dd", "#adc0cb"), percent = FALSE, plot_title = "Collaboration Hours", plot_subtitle = paste("Average by", tolower(camel_clean(hrvar))), legend_lab = NULL, rank = "descending", xlim = NULL, text_just = 0.5, text_colour = "#FFFFFF" )
Returns a 'ggplot' object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_tracking()
,
create_trend()
,
period_change()
sq_data %>% create_stacked(hrvar = "LevelDesignation", metrics = c("Meeting_hours", "Email_hours"), return = "plot") sq_data %>% create_stacked(hrvar = "FunctionType", metrics = c("Meeting_hours", "Email_hours", "Call_hours", "Instant_Message_hours"), return = "plot", rank = "ascending") sq_data %>% create_stacked(hrvar = "FunctionType", metrics = c("Meeting_hours", "Email_hours", "Call_hours", "Instant_Message_hours"), return = "table")
sq_data %>% create_stacked(hrvar = "LevelDesignation", metrics = c("Meeting_hours", "Email_hours"), return = "plot") sq_data %>% create_stacked(hrvar = "FunctionType", metrics = c("Meeting_hours", "Email_hours", "Call_hours", "Instant_Message_hours"), return = "plot", rank = "ascending") sq_data %>% create_stacked(hrvar = "FunctionType", metrics = c("Meeting_hours", "Email_hours", "Call_hours", "Instant_Message_hours"), return = "table")
Create a two-series line chart that visualizes a set of metric over time for the selected population, with one of the series being a four-week rolling average.
create_tracking( data, metric, plot_title = us_to_space(metric), plot_subtitle = "Measure over time", percent = FALSE )
create_tracking( data, metric, plot_title = us_to_space(metric), plot_subtitle = "Measure over time", percent = FALSE )
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
Character string containing the name of the metric,
e.g. "Collaboration_hours"
percentage signs. Defaults to |
plot_title |
An option to override plot title. |
plot_subtitle |
An option to override plot subtitle. |
percent |
Logical value to determine whether to show labels as
percentage signs. Defaults to |
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_trend()
,
period_change()
sq_data %>% create_tracking( metric = "Collaboration_hours", percent = FALSE )
sq_data %>% create_tracking( metric = "Collaboration_hours", percent = FALSE )
Provides a week by week view of a selected Viva Insights metric. By default returns a week by week heatmap bar plot, highlighting the points in time with most activity. Additional options available to return a summary table.
create_trend( data, metric, hrvar = "Organization", mingroup = 5, palette = c("steelblue4", "aliceblue", "white", "mistyrose1", "tomato1"), return = "plot", legend_title = "Hours" )
create_trend( data, metric, hrvar = "Organization", mingroup = 5, palette = c("steelblue4", "aliceblue", "white", "mistyrose1", "tomato1"), return = "plot", legend_title = "Hours" )
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
palette |
Character vector containing colour codes, ranked from the
lowest value to the highest value. This is passed directly to
|
return |
Character vector specifying what to return, defaults to
|
legend_title |
String to be used as the title of the legend. Defaults to
|
Returns a 'ggplot' object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
period_change()
Other Time-series:
IV_by_period()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
period_change()
create_trend(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation") # custom colours create_trend( sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", palette = c( "#FB6107", "#F3DE2C", "#7CB518", "#5C8001" ) )
create_trend(sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation") # custom colours create_trend( sq_data, metric = "Collaboration_hours", hrvar = "LevelDesignation", palette = c( "#FB6107", "#F3DE2C", "#7CB518", "#5C8001" ) )
Supply a numeric variable, e.g. Collaboration_hours
, and return a character
vector.
cut_hour(metric, cuts, unit = "hours", lbound = 0, ubound = 100)
cut_hour(metric, cuts, unit = "hours", lbound = 0, ubound = 100)
metric |
A numeric variable representing hours. |
cuts |
A numeric vector of minimum length 3 to represent the cut points required. The minimum and maximum values provided in the vector are inclusive. |
unit |
String to specify the unit of the labels. Defaults to "hours". |
lbound |
Numeric. Specifies the lower bound (inclusive) value for the minimum label. Defaults to 0. |
ubound |
Numeric. Specifies the upper bound (inclusive) value for the maximum label. Defaults to 100. |
This is used within create_dist()
for numeric to categorical conversion.
Character vector representing a converted categorical variable, appended
with the label of the unit. See examples
for more information.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
# Direct use cut_hour(1:30, cuts = c(15, 20, 25)) # Use on a query cut_hour(sq_data$Collaboration_hours, cuts = c(10, 15, 20))
# Direct use cut_hour(1:30, cuts = c(15, 20, 25)) # Use on a query cut_hour(sq_data$Collaboration_hours, cuts = c(10, 15, 20))
A dataset generated from a Standard Person Query from advanced insights in
Viva Insights. Note that this is largely interchangeable with a Ways of
Working Assessment query, with the exception of some additional variables
and the different variable names used for Collaboration_hours
and
Instant_Message_hours
.
dv_data
dv_data
A data frame with 897 rows and 69 variables:
...
data frame.
Other Data:
em_data
,
g2g_data
,
mt_data
,
p2p_data_sim()
,
sq_data
A sample dataset representing an Hourly Collaboration query. The data is grouped by week and contains columns for unscheduled calls, IMs sent, emails sent, and meetings. There are 24 columns per collaboration signal, representing each hour of the day.
em_data
em_data
A data frame with 2000 rows and 105 variables:
...
data frame.
Other Data:
dv_data
,
g2g_data
,
mt_data
,
p2p_data_sim()
,
sq_data
Analyze Email Hours distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
email_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(5, 10, 15) )
email_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(5, 10, 15) )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
cut |
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20) |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Emails:
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
# Return plot email_dist(sq_data, hrvar = "Organization") # Return summary table email_dist(sq_data, hrvar = "Organization", return = "table") # Return result with a custom specified breaks email_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))
# Return plot email_dist(sq_data, hrvar = "Organization") # Return summary table email_dist(sq_data, hrvar = "Organization", return = "table") # Return result with a custom specified breaks email_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))
Analyze weekly email hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.
email_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
email_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A jittered scatter plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Emails:
email_dist()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
# Return plot email_fizz(sq_data, hrvar = "Organization", return = "plot") # Return summary table email_fizz(sq_data, hrvar = "Organization", return = "table")
# Return plot email_fizz(sq_data, hrvar = "Organization", return = "plot") # Return summary table email_fizz(sq_data, hrvar = "Organization", return = "table")
Provides a week by week view of email time, visualised as line charts. By default returns a line chart for email hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.
email_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
email_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted line plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Emails:
email_dist()
,
email_fizz()
,
email_rank()
,
email_summary()
,
email_trend()
# Return a line plot email_line(sq_data, hrvar = "LevelDesignation") # Return summary table email_line(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a line plot email_line(sq_data, hrvar = "LevelDesignation") # Return summary table email_line(sq_data, hrvar = "LevelDesignation", return = "table")
This function scans a standard query output for groups with high levels of 'Weekly Email Collaboration'. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by hours of digital collaboration.
email_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" )
email_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
mode |
String to specify calculation mode. Must be either:
|
plot_mode |
Numeric vector to determine which plot mode to return. Must
be either
|
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric Email_hours
.
See create_rank()
for applying the same analysis to a different metric.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bubble plot where the x-axis represents the
metric, the y-axis represents the HR attributes, and the size of the
bubbles represent the size of the organizations. Note that there is no
plot output if mode
is set to "combine"
.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Emails:
email_dist()
,
email_fizz()
,
email_line()
,
email_summary()
,
email_trend()
# Return rank table email_rank( data = sq_data, return = "table" ) # Return plot email_rank( data = sq_data, return = "plot" )
# Return rank table email_rank( data = sq_data, return = "table" ) # Return plot email_rank( data = sq_data, return = "plot" )
Provides an overview analysis of weekly email hours. Returns a bar plot showing average weekly email hours by default. Additional options available to return a summary table.
email_summary(data, hrvar = "Organization", mingroup = 5, return = "plot") email_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
email_summary(data, hrvar = "Organization", mingroup = 5, return = "plot") email_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Emails:
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_trend()
# Return a ggplot bar chart email_summary(sq_data, hrvar = "LevelDesignation") # Return a summary table email_summary(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a ggplot bar chart email_summary(sq_data, hrvar = "LevelDesignation") # Return a summary table email_summary(sq_data, hrvar = "LevelDesignation", return = "table")
Provides a week by week view of email time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.
email_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
email_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
Character vector specifying what to return, defaults to
|
Uses the metric Email_hours
.
Returns a 'ggplot' object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Emails:
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
A general use function to export 'wpa' outputs to CSV, clipboard, or save as
images. By default, export()
copies a data frame to the clipboard. If the
input is a 'ggplot' object, the default behaviour is to export a PNG.
export( x, method = "clipboard", path = "wpa export", timestamp = TRUE, width = 12, height = 9 )
export( x, method = "clipboard", path = "wpa export", timestamp = TRUE, width = 12, height = 9 )
x |
Data frame or 'ggplot' object to be passed through. |
method |
Character string specifying the method of export. Valid inputs include:
|
path |
If exporting a file, enter the path and the desired file name,
excluding the file extension. For example, |
timestamp |
Logical vector specifying whether to include a timestamp in
the file name. Defaults to |
width |
Width of the plot |
height |
Height of the plot |
A different output is returned depending on the value passed to the method
argument:
"clipboard"
: no return - data frame is saved to clipboard.
"csv"
: CSV file containing data frame is saved to specified path.
"png"
: PNG file containing 'ggplot' object is saved to specified path.
"svg"
: SVG file containing 'ggplot' object is saved to specified path.
"jpeg"
: JPEG file containing 'ggplot' object is saved to specified path.
"pdf"
: PDF file containing 'ggplot' object is saved to specified path.
Martin Chan [email protected]
Other Import and Export:
copy_df()
,
create_dt()
,
import_to_fst()
,
import_wpa()
,
standardise_pq()
Analyze the distribution of External Collaboration Hours. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
external_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(5, 10, 15) )
external_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(5, 10, 15) )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
cut |
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20) |
Uses the metric External_collaboration_hours
.
See create_dist()
for applying the same analysis to a different metric.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other External Collaboration:
external_fizz()
,
external_line()
,
external_sum()
# Return plot external_dist(sq_data, hrvar = "Organization") # Return summary table external_dist(sq_data, hrvar = "Organization", return = "table") # Return result with a custom specified breaks external_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))
# Return plot external_dist(sq_data, hrvar = "Organization") # Return summary table external_dist(sq_data, hrvar = "Organization", return = "table") # Return result with a custom specified breaks external_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))
Analyze weekly External Collaboration hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.
external_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
external_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric Collaboration_hours_external
.
See create_fizz()
for applying the same analysis to a different metric.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A jittered scatter plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other External Collaboration:
external_dist()
,
external_line()
,
external_sum()
# Return plot external_fizz(sq_data, hrvar = "LevelDesignation", return = "plot") # Return summary table external_fizz(sq_data, hrvar = "Organization", return = "table")
# Return plot external_fizz(sq_data, hrvar = "LevelDesignation", return = "plot") # Return summary table external_fizz(sq_data, hrvar = "Organization", return = "table")
Provides a week by week view of External collaboration time, visualized as line chart. By default returns a separate panel per value in the HR attribute. Additional options available to return a summary table.
external_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
external_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric Collaboration_hours_external
.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted line plot for the metric.
"table"
: data frame. A summary table for the metric.
create_line()
for applying the same analysis to a different metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other External Collaboration:
external_dist()
,
external_fizz()
,
external_sum()
# Return a line plot external_line(sq_data, hrvar = "LevelDesignation") # Return summary table external_line(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a line plot external_line(sq_data, hrvar = "LevelDesignation") # Return summary table external_line(sq_data, hrvar = "LevelDesignation", return = "table")
Plot the external network metrics for a HR variable as a scatter plot, showing 'External Network Breadth' as the vertical axis and 'External Network Size' as the horizontal axis.
external_network_plot( data, hrvar = "Organization", mingroup = 5, return = "plot", bubble_size = c(1, 8) )
external_network_plot( data, hrvar = "Organization", mingroup = 5, return = "plot", bubble_size = c(1, 8) )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation" |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the
following strings: - |
bubble_size |
A numeric vector of length two to specify the size range of the bubbles |
Uses the metrics External_network_size
and Networking_outside_company
.
'ggplot' object showing a bubble plot with external network size as the x-axis and external network breadth as the y-axis. The size of the bubbles represent the number of unique employees in each group.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Network:
g2g_data
,
internal_network_plot()
,
network_describe()
,
network_g2g()
,
network_p2p()
,
network_summary()
,
p2p_data_sim()
# Return plot external_network_plot(sq_data, return = "plot")
# Return plot external_network_plot(sq_data, return = "plot")
This function scans a Standard Person Query for groups with high levels of External Collaboration. Returns a plot by default, with an option to return a table with all groups (across multiple HR attributes) ranked by hours of External Collaboration.
external_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" )
external_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
mode |
String to specify calculation mode. Must be either:
|
plot_mode |
Numeric vector to determine which plot mode to return. Must
be either
|
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric Collaboration_hours_external
.
See create_rank()
for applying the same analysis to a different metric.
When 'table' is passed in return
, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other After-hours Collaboration:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
Provides an overview analysis of 'External Collaboration'. Returns a stacked bar plot of internal and external collaboration. Additional options available to return a summary table.
external_sum( data, hrvar = "Organization", mingroup = 5, stack_colours = c("#1d327e", "#1d7e6a"), return = "plot" ) external_summary( data, hrvar = "Organization", mingroup = 5, stack_colours = c("#1d327e", "#1d7e6a"), return = "plot" )
external_sum( data, hrvar = "Organization", mingroup = 5, stack_colours = c("#1d327e", "#1d7e6a"), return = "plot" ) external_summary( data, hrvar = "Organization", mingroup = 5, stack_colours = c("#1d327e", "#1d7e6a"), return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
stack_colours |
A character vector to specify the colour codes for the stacked bar charts. |
return |
Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table". |
Returns a 'ggplot' object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other External Collaboration:
external_dist()
,
external_fizz()
,
external_line()
# Return a plot external_sum(sq_data, hrvar = "LevelDesignation") # Return summary table external_sum(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a plot external_sum(sq_data, hrvar = "LevelDesignation") # Return summary table external_sum(sq_data, hrvar = "LevelDesignation", return = "table")
Return a data frame with the start and end date of the query data by default. There are options to return a descriptive string, which is used in the caption of plots in this package.
extract_date_range(data, return = "table")
extract_date_range(data, return = "table")
data |
Data frame containing a query to pass through.
The data frame must contain a |
return |
String specifying what output to return. Returns a table by default ("table"), but allows returning a descriptive string ("text"). |
A different output is returned depending on the value passed to the return
argument:
"table"
: data frame. A summary table containing the start and end date
for the dataset.
"text"
: string. Contains a descriptive string on the start and end date
for the dataset.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
This function uses a combination of variable class, number of unique values, and regular expression matching to extract HR / organisational attributes from a data frame.
extract_hr(data, max_unique = 50, exclude_constants = TRUE, return = "names")
extract_hr(data, max_unique = 50, exclude_constants = TRUE, return = "names")
data |
A data frame to be passed through. |
max_unique |
A numeric value representing the maximum number of unique values to accept for an HR attribute. Defaults to 50. |
exclude_constants |
Logical value to specify whether single-value HR
attributes are to be excluded. Defaults to |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"names"
: character vector identifying all the names of HR variables
present in the data.
"vars"
: data frame containing all the columns of HR variables present
in the data.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
Other Data Validation:
check_query()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
sq_data %>% extract_hr(return = "names") sq_data %>% extract_hr(return = "vars")
sq_data %>% extract_hr(return = "names") sq_data %>% extract_hr(return = "vars")
This function flags persons who have an unusual ratio of collaboration hours to after-hours collaboration hours. Returns a character string by default.
flag_ch_ratio(data, threshold = c(1, 30), return = "message")
flag_ch_ratio(data, threshold = c(1, 30), return = "message")
data |
A data frame containing a Person Query. |
threshold |
Numeric value specifying the threshold for flagging. Defaults to 30. |
return |
String to specify what to return. Options include:
|
A different output is returned depending on the value passed to the return
argument:
"message"
: message in the console containing diagnostic summary
"text"
: string containing diagnotic summary
"data"
: data frame. Person-level data with flags on unusually high or
low ratios
The metric Collaboration_hours
is used in the calculations. Please ensure
that your query contains a metric with the exact same name.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
flag_ch_ratio(sq_data) data.frame(PersonId = c("Alice", "Bob"), Collaboration_hours = c(30, 0.5), After_hours_collaboration_hours = c(0.5, 30)) %>% flag_ch_ratio()
flag_ch_ratio(sq_data) data.frame(PersonId = c("Alice", "Bob"), Collaboration_hours = c(30, 0.5), After_hours_collaboration_hours = c(0.5, 30)) %>% flag_ch_ratio()
This function flags persons who have an unusual ratio
of email hours to emails sent. If the ratio between Email Hours and
Emails Sent is greater than the threshold, then observations tied to
a PersonId
is flagged as unusual.
flag_em_ratio(data, threshold = 1, return = "text")
flag_em_ratio(data, threshold = 1, return = "text")
data |
A data frame containing a Person Query. |
threshold |
Numeric value specifying the threshold for flagging. Defaults to 1. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"text"
: string. A diagnostic message.
"data"
: data frame. Person-level data with those flagged with unusual
ratios.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
flag_em_ratio(sq_data)
flag_em_ratio(sq_data)
This is used as part of data validation to check if there are extreme values in the dataset.
flag_extreme( data, metric, person = TRUE, threshold, mode = "above", return = "message" )
flag_extreme( data, metric, person = TRUE, threshold, mode = "above", return = "message" )
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
A character string specifying the metric to test. |
person |
A logical value to specify whether to calculate
person-averages. Defaults to |
threshold |
Numeric value specifying the threshold for flagging. |
mode |
String determining mode to use for identifying extreme values.
|
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"text"
: string. A diagnostic message.
"message"
: message on console. A diagnostic message.
"table"
: data frame. A person-level table with PersonId
and the
extreme values of the selected metric.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
# The threshold values are intentionally set low to trigger messages. flag_extreme(sq_data, "Email_hours", threshold = 15) # Return a summary table flag_extreme(sq_data, "Email_hours", threshold = 15, return = "table") # Person-week level flag_extreme(sq_data, "Email_hours", person = FALSE, threshold = 15) # Check for values equal to threshold flag_extreme(sq_data, "Email_hours", person = TRUE, mode = "equal", threshold = 0) # Check for values below threshold flag_extreme(sq_data, "Email_hours", person = TRUE, mode = "below", threshold = 5)
# The threshold values are intentionally set low to trigger messages. flag_extreme(sq_data, "Email_hours", threshold = 15) # Return a summary table flag_extreme(sq_data, "Email_hours", threshold = 15, return = "table") # Person-week level flag_extreme(sq_data, "Email_hours", person = FALSE, threshold = 15) # Check for values equal to threshold flag_extreme(sq_data, "Email_hours", person = TRUE, mode = "equal", threshold = 0) # Check for values below threshold flag_extreme(sq_data, "Email_hours", person = TRUE, mode = "below", threshold = 5)
This function flags unusual outlook calendar settings for start and end time of work day.
flag_outlooktime(data, threshold = c(4, 15), return = "message")
flag_outlooktime(data, threshold = c(4, 15), return = "message")
data |
A data frame containing a Person Query. |
threshold |
A numeric vector of length two, specifying the hour threshold for flagging. Defaults to c(4, 15). |
return |
String specifying what to return. This must be one of the following strings:
|
A different output is returned depending on the value passed to the return
argument:
"text"
: string. A diagnostic message.
"message"
: message on console. A diagnostic message.
"data"
: data frame. Data where flag is present.
See Value
for more information.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
# Demo with `dv_data` flag_outlooktime(dv_data) # Example where Outlook Start and End times are imputed spq_df <- sq_data spq_df$WorkingStartTimeSetInOutlook <- "6:30" spq_df$WorkingEndTimeSetInOutlook <- "23:30" # Return a message flag_outlooktime(spq_df, threshold = c(5, 13)) # Return data flag_outlooktime(spq_df, threshold = c(5, 13), return = "data")
# Demo with `dv_data` flag_outlooktime(dv_data) # Example where Outlook Start and End times are imputed spq_df <- sq_data spq_df$WorkingStartTimeSetInOutlook <- "6:30" spq_df$WorkingEndTimeSetInOutlook <- "23:30" # Return a message flag_outlooktime(spq_df, threshold = c(5, 13)) # Return data flag_outlooktime(spq_df, threshold = c(5, 13), return = "data")
Pass an Hourly Collaboration query and compute a Flexibility Index for the entire population. The Flexibility Index is a quantitative measure of the freedom for employees to work at a time of their choice.
flex_index( data, hrvar = NULL, signals = c("email", "IM"), active_threshold = 0, start_hour = "0900", end_hour = "1700", return = "plot", plot_method = "common", mode = "binary" )
flex_index( data, hrvar = NULL, signals = c("email", "IM"), active_threshold = 0, start_hour = "0900", end_hour = "1700", return = "plot", plot_method = "common", mode = "binary" )
data |
Hourly Collaboration query to be passed through as data frame. |
hrvar |
A string specifying the HR attribute to cut the data by. Defaults to NULL. This only affects the function when "table" is returned. |
signals |
Character vector to specify which collaboration metrics to use:
|
active_threshold |
A numeric value specifying the minimum number of signals to be greater than in order to qualify as active. Defaults to 0. |
start_hour |
A character vector specifying starting hours, e.g. |
end_hour |
A character vector specifying end hours, e.g. |
return |
String specifying what to return. This must be one of the following strings:
See |
plot_method |
Character string for determining which plot to return.
|
mode |
String specifying aggregation method for plot. Only applicable
when
|
The Flexibility Index is a metric that has been developed to quantify and measure flexibility using behavioural data from Viva Insights. Flexibility here refers to the freedom of employees to adopt a working arrangement of their own choice, and more specifically refers to time flexibility (whenever I want) as opposed to geographical flexibility (wherever I want).
The Flexibility Index is a score between 0 and 1, and is calculated based on three component measures:
ChangeHours
: this represents the freedom to define work start and end
time. Teams that embrace flexibility allow members to start and end their
workday at different times.
TakeBreaks
: this represents the freedom define one's own schedule. In
teams that embrace flexibility, some members will choose to organize / split
their day in different ways (e.g. take a long lunch-break, disconnect in the
afternoon and reconnect in the evening, etc.).
ControlHours
: this represents the freedom to switch off. Members who
choose alternative arrangements should be able to maintain a workload that is
broadly equivalent to those that follow standard arrangements.
The Flexibility Index returns with one single score for each person-week,
plus the three sub-component binary variables (TakeBreaks
,
ChangeHours
, ControlHours
). At the person-week level, each score can only
have the values 0, 0.33, 0.66, and 1. The Flexibility Index should only be
interpreted as a group of person-weeks, e.g. the average Flexibility
Index of a team of 6 over time, where the possible values would range from 0
to 1.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A random of ten working patterns are displayed,
with diagnostic data and the Flexibility Index shown on the plot.
"data"
: data frame. The original input data appended with the
Flexibility Index and the component scores. Can be used with
plot_flex_index()
to recreate visuals found in flex_index()
.
"table"
: data frame. A summary table for the metric.
The central feature of flexible working arrangements is that it is the employee rather the employer who chooses the working arrangement. Observed flexibility serves as a proxy to assess whether a flexible working arrangement are in place. The Flexibility Index is an attempt to create such a proxy for quantifying and measuring flexibility, using behavioural data from Viva Insights.
The key component of TakeBreaks
in the Flexibility Index is best
interpreted as 'recurring disconnection time'. This denotes an hourly block
where there is consistently no activity occurring throughout the week. Note
that this applies a stricter criterion compared to the common definition of
a break, which is simply a time interval where no active work is being
done, and thus the more specific terminology 'recurring disconnection time'
is preferred.
The raw data containing the computed Flexibility Index can be returned with the following:
em_data %>% flex_index(return = "data")
Other Working Patterns:
identify_shifts()
,
identify_shifts_wp()
,
plot_flex_index()
,
workpatterns_area()
,
workpatterns_classify()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()
# Create a sample small dataset orgs <- c("Customer Service", "Financial Planning", "Biz Dev") em_data <- em_data[em_data$Organization %in% orgs, ] # Examples of how to test the plotting options individually # Sample of 10 work patterns em_data %>% flex_index(return = "plot", plot_method = "sample") # 10 most common work patterns em_data %>% flex_index(return = "plot", plot_method = "common") # Plot Flexibility Index over time em_data %>% flex_index(return = "plot", plot_method = "time") # Return a summary table with the computed Flexibility Index em_data %>% flex_index(hrvar = "Organization", return = "table")
# Create a sample small dataset orgs <- c("Customer Service", "Financial Planning", "Biz Dev") em_data <- em_data[em_data$Organization %in% orgs, ] # Examples of how to test the plotting options individually # Sample of 10 work patterns em_data %>% flex_index(return = "plot", plot_method = "sample") # 10 most common work patterns em_data %>% flex_index(return = "plot", plot_method = "common") # Plot Flexibility Index over time em_data %>% flex_index(return = "plot", plot_method = "time") # Return a summary table with the computed Flexibility Index em_data %>% flex_index(hrvar = "Organization", return = "table")
A demo dataset representing a Group-to-Group Query. The grouping
organizational attribute used here is Organization
, where the variable have
been prefixed with TimeInvestors_
and Collaborators_
to represent the
direction of collaboration.
g2g_data
g2g_data
A data frame with 1417 rows and 7 variables:
...
data frame.
Other Data:
dv_data
,
em_data
,
mt_data
,
p2p_data_sim()
,
sq_data
Other Network:
external_network_plot()
,
internal_network_plot()
,
network_describe()
,
network_g2g()
,
network_p2p()
,
network_summary()
,
p2p_data_sim()
This is a support function using a list-pmap workflow to create a HTML document, using RMarkdown as the engine.
generate_report( title = "My minimal HTML generator", filename = "minimal_html", outputs = output_list, titles, subheaders, echos, levels, theme = "united", preamble = "" )
generate_report( title = "My minimal HTML generator", filename = "minimal_html", outputs = output_list, titles, subheaders, echos, levels, theme = "united", preamble = "" )
title |
Character string to specify the title of the chunk. |
filename |
File name to be used in the exported HTML. |
outputs |
A list of outputs to be added to the HTML report.
Note that |
titles |
A list/vector of character strings to specify the title of the chunks. |
subheaders |
A list/vector of character strings to specify the subheaders for each chunk. |
echos |
A list/vector of logical values to specify whether to display code. |
levels |
A list/vector of numeric value to specify the header level of the chunk. |
theme |
Character vector to specify theme to be used for the report.
E.g. |
preamble |
A preamble to appear at the beginning of the report, passed as a text string. |
An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.
Below is an example on how to set up a custom report.
The first step is to define the content that will go into a report and assign the outputs to a list.
# Step 1: Define Content output_list <- list(sq_data %>% workloads_summary(return = "plot"), sq_data %>% workloads_summary(return = "table")) %>% purrr::map_if(is.data.frame, create_dt)
The next step is to add a list of titles for each of the objects on the list:
# Step 2: Add Corresponding Titles title_list <- c("Workloads Summary - Plot", "Workloads Summary - Table") n_title <- length(title_list)
The final step is to run generate_report()
. This can all be wrapped within
a function such that the function can be used to generate a HTML report.
# Step 3: Generate Report generate_report(title = "My First Report", filename = "My First Report", outputs = output_list, titles = title_list, subheaders = rep("", n_title), echos = rep(FALSE, n_title
Martin Chan [email protected]
Other Reports:
IV_report()
,
capacity_report()
,
coaching_report()
,
collaboration_report()
,
connectivity_report()
,
meeting_tm_report()
,
read_preamble()
,
subject_validate_report()
,
validation_report()
,
workpatterns_report()
This is a support function that accepts parameters and creates a HTML
document based on an RMarkdown template. This is an alternative to
generate_report()
which instead creates an RMarkdown document from scratch
using individual code chunks.
generate_report2( output_format = rmarkdown::html_document(toc = TRUE, toc_depth = 6, theme = "cosmo"), output_file = "report.html", output_dir = getwd(), report_title = "Report", rmd_dir = system.file("rmd_template/minimal.rmd", package = "wpa"), ... )
generate_report2( output_format = rmarkdown::html_document(toc = TRUE, toc_depth = 6, theme = "cosmo"), output_file = "report.html", output_dir = getwd(), report_title = "Report", rmd_dir = system.file("rmd_template/minimal.rmd", package = "wpa"), ... )
output_format |
output format in |
output_file |
output file name in |
output_dir |
output directory for report in |
report_title |
report title. Default is |
rmd_dir |
string specifying the path to the directory containing the RMarkdown template files. |
... |
other arguments to be passed to |
The implementation of this function was inspired by the 'DataExplorer' package by boxuancui, with credits due to the original author.
This utility function is useful to use in the portmanteau functions, BoxPierce, MahdiMcLeod, Hosking, LiMcLeod, LjungBox, and portest. GetResiduals() function takes a fitted time-series object with class "ar", "arima0", "Arima", ("ARIMA forecast ARIMA Arima"), "lm", ("glm" "lm"), "varest", or "list". and returns the residuals and the order from the fitted object.
This method and the bottom documentation is taken directly from the original 'portes' package.
GetResiduals(obj)
GetResiduals(obj)
obj |
a fitted time-series model with class "ar", "arima0", "Arima", ("ARIMA forecast ARIMA Arima"), "lm", ("glm" "lm"), "varest", or "list". |
List of order of fitted time series model and residuals from this model.
Esam Mahdi and A.I. McLeod.
fit <- arima(Nile, c(1, 0, 1)) GetResiduals(fit)
fit <- arima(Nile, c(1, 0, 1)) GetResiduals(fit)
n
contiguous colours, as a red-yellow-green palette.Takes a numeric value n
and returns a character vector of colour HEX codes
corresponding to the heat map palette.
heat_colours(n, alpha, rev = FALSE) heat_colors(n, alpha, rev = FALSE)
heat_colours(n, alpha, rev = FALSE) heat_colors(n, alpha, rev = FALSE)
n |
the number of colors (>= 1) to be in the palette. |
alpha |
an alpha-transparency level in the range of 0 to 1 (0 means transparent and 1 means opaque) |
rev |
logical indicating whether the ordering of the colors should be reversed. |
A character vector containing the HEX codes and the same length as n
is
returned.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
barplot(rep(10, 50), col = heat_colours(n = 50), border = NA) barplot(rep(10, 50), col = heat_colours(n = 50, alpha = 0.5, rev = TRUE), border = NA)
barplot(rep(10, 50), col = heat_colours(n = 50), border = NA) barplot(rep(10, 50), col = heat_colours(n = 50, alpha = 0.5, rev = TRUE), border = NA)
Returns a line chart showing the change in employee count over time. Part of a data validation process to check for unusual license growth / declines over time.
hr_trend(data, return = "plot")
hr_trend(data, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. A line plot showing employee count over time.
"table"
: data frame containing a summary table.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
# Return plot hr_trend(dv_data) # Return summary table hr_trend(dv_data, return = "table")
# Return plot hr_trend(dv_data) # Return summary table hr_trend(dv_data, return = "table")
This function enables you to create a count of the distinct people by the specified HR attribute.The default behaviour is to return a bar chart as typically seen in 'Analysis Scope'.
hrvar_count(data, hrvar = "Organization", return = "plot") analysis_scope(data, hrvar = "Organization", return = "plot")
hrvar_count(data, hrvar = "Organization", return = "plot") analysis_scope(data, hrvar = "Organization", return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation". If a vector with more than one value is provided, the HR attributes are automatically concatenated. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object containing a bar plot.
"table"
: data frame containing a count table.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
# Return a bar plot hrvar_count(sq_data, hrvar = "LevelDesignation") # Return a summary table hrvar_count(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a bar plot hrvar_count(sq_data, hrvar = "LevelDesignation") # Return a summary table hrvar_count(sq_data, hrvar = "LevelDesignation", return = "table")
This function enables you to create a summary table to validate
organizational data. This table will provide a summary of the data found in
the Viva Insights Data sources page. This function will return a summary
table with the count of distinct fields per HR attribute and the percentage
of employees with missing values for that attribute. See hrvar_count()
function for more detail on the specific HR attribute of interest.
hrvar_count_all( data, n_var = 50, return = "message", threshold = 100, maxna = 20 )
hrvar_count_all( data, n_var = 50, return = "message", threshold = 100, maxna = 20 )
data |
A Standard Person Query dataset in the form of a data frame. |
n_var |
number of HR variables to include in report as rows. Default is set to 50 HR variables. |
return |
String to specify what to return |
threshold |
The max number of unique values allowed for any attribute. Default is 100. |
maxna |
The max percentage of NAs allowable for any column. Default is 20. |
Returns an error message by default, where 'text' is passed in return
.
'table'
: data frame. A summary table listing the number of distinct
fields and percentage of missing values for the specified number of HR
attributes will be returned.
'message'
: outputs a message indicating which values are
beyond the specified thresholds.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
# Return a summary table of all HR attributes hrvar_count_all(sq_data, return = "table")
# Return a summary table of all HR attributes hrvar_count_all(sq_data, return = "table")
This function provides a week by week view of the count of the distinct people by the specified HR attribute.The default behaviour is to return a week by week heatmap bar plot.
hrvar_trend(data, hrvar = "Organization", return = "plot")
hrvar_trend(data, hrvar = "Organization", return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation". If a vector with more than one value is provided, the HR attributes are automatically concatenated. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object containing a bar plot.
"table"
: data frame containing a count table.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
# Return a bar plot hrvar_trend(sq_data, hrvar = "LevelDesignation") # Return a summary table hrvar_trend(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a bar plot hrvar_trend(sq_data, hrvar = "LevelDesignation") # Return a summary table hrvar_trend(sq_data, hrvar = "LevelDesignation", return = "table")
This function identifies and counts the number of employees who have churned
from the dataset by measuring whether an employee who is present in the first
n
(n1) weeks of the data is present in the last n
(n2) weeks of the data.
identify_churn(data, n1 = 6, n2 = 6, return = "message", flip = FALSE)
identify_churn(data, n1 = 6, n2 = 6, return = "message", flip = FALSE)
data |
A Person Query as a data frame. Must contain a |
n1 |
A numeric value specifying the number of weeks at the beginning of the period that defines the measured employee set. Defaults to 6. |
n2 |
A numeric value specifying the number of weeks at the end of the period to calculate whether employees have churned from the data. Defaults to 6. |
return |
String specifying what to return. This must be one of the following strings:
See |
flip |
Logical, defaults to FALSE. This determines whether to reverse
the logic of identifying the non-overlapping set. If set to |
An additional use case of this function is the ability to identify
"new-joiners" by using the argument flip
.
If an employee is present in the first n
weeks of the data but not present
in the last n
weeks of the data, the function considers the employee as
churned. As the measurement period is defined by the number of weeks from the
start and the end of the passed data frame, you may consider filtering the
dates accordingly before running this function.
Another assumption that is in place is that any employee whose PersonId
is
not available in the data has churned. Note that there may be other reasons
why an employee's PersonId
may not be present, e.g. maternity/paternity
leave, Viva Insights license has been removed, shift to a
low-collaboration role (to the extent that he/she becomes inactive).
A different output is returned depending on the value passed to the return
argument:
"message"
: Message on console. A diagnostic message.
"text"
: String. A diagnostic message.
"data"
: Character vector containing the the PersonId
of
employees who have been identified as churned.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
sq_data %>% identify_churn(n1 = 3, n2 = 3, return = "message")
sq_data %>% identify_churn(n1 = 3, n2 = 3, return = "message")
Takes a vector of dates and identify whether the frequency is 'daily', 'weekly', or 'monthly'. The primary use case for this function is to provide an accurate description of the query type used and for raising errors should a wrong date grouping be used in the data input.
identify_datefreq(x)
identify_datefreq(x)
x |
Vector containing a series of dates. |
Date frequency detection works as follows:
If at least three days of the week are present (e.g., Monday, Wednesday, Thursday) in the series, then the series is classified as 'daily'
If the total number of months in the series is equal to the length, then the series is classified as 'monthly'
If the total number of sundays in the series is equal to the length of the series, then the series is classified as 'weekly
String describing the detected date frequency, i.e.:
'daily'
'weekly'
'monthly'
One of the assumptions made behind the classification is that weeks are denoted with Sundays, hence the count of sundays to measure the number of weeks. In this case, weeks where a Sunday is missing would result in an 'unable to classify' error.
Another assumption made is that dates are evenly distributed, i.e. that the gap between dates are equal. If dates are unevenly distributed, e.g. only two days of the week are available for a given week, then the algorithm will fail to identify the frequency as 'daily'.
start_date <- as.Date("2022/06/26") end_date <- as.Date("2022/11/27") # Daily day_seq <- seq.Date( from = start_date, to = end_date, by = "day" ) identify_datefreq(day_seq) # Weekly week_seq <- seq.Date( from = start_date, to = end_date, by = "week" ) identify_datefreq(week_seq) # Monthly month_seq <- seq.Date( from = start_date, to = end_date, by = "month" ) identify_datefreq(month_seq)
start_date <- as.Date("2022/06/26") end_date <- as.Date("2022/11/27") # Daily day_seq <- seq.Date( from = start_date, to = end_date, by = "day" ) identify_datefreq(day_seq) # Weekly week_seq <- seq.Date( from = start_date, to = end_date, by = "week" ) identify_datefreq(week_seq) # Monthly month_seq <- seq.Date( from = start_date, to = end_date, by = "month" ) identify_datefreq(month_seq)
This function scans a standard query output for weeks where collaboration hours is far outside the mean. Returns a list of weeks that appear to be holiday weeks and optionally an edited dataframe with outliers removed. By default, missing values are excluded.
As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.
identify_holidayweeks(data, sd = 1, return = "message")
identify_holidayweeks(data, sd = 1, return = "message")
data |
A Standard Person Query dataset in the form of a data frame. |
sd |
The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"message"
: message on console. a message is printed identifying holiday
weeks.
"data"
: data frame. A dataset with outlier weeks flagged in a new
column is returned as a dataframe.
"data_cleaned"
: data frame. A dataset with outlier weeks removed is
returned.
"data_dirty"
: data frame. A dataset with only outlier weeks is
returned.
"plot"
: ggplot object. A line plot of Collaboration Hours with holiday
weeks highlighted.
The metric Collaboration_hours
is used in the calculations. Please ensure
that your query contains a metric with the exact same name.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
# Return a message by default identify_holidayweeks(sq_data) # Return plot identify_holidayweeks(sq_data, return = "plot")
# Return a message by default identify_holidayweeks(sq_data) # Return plot identify_holidayweeks(sq_data, return = "plot")
This function scans a standard query output for weeks where collaboration hours is far outside the mean for any individual person in the dataset. Returns a list of weeks that appear to be inactive weeks and optionally an edited dataframe with outliers removed.
As best practice, run this function prior to any analysis to remove atypical collaboration weeks from your dataset.
identify_inactiveweeks(data, sd = 2, return = "text")
identify_inactiveweeks(data, sd = 2, return = "text")
data |
A Standard Person Query dataset in the form of a data frame. |
sd |
The standard deviation below the mean for collaboration hours that should define an outlier week. Enter a positive number. Default is 1 standard deviation. |
return |
String specifying what to return. This must be one of the following strings:
See |
Returns an error message by default, where 'text'
is returned. When
'data_cleaned'
is passed, a dataset with outlier weeks removed is returned
as a dataframe. When 'data_dirty'
is passed, a dataset with outlier weeks
is returned as a dataframe.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
This function scans a standard query output to identify employees with consistently low collaboration signals. Returns the % of non-knowledge workers identified by Organization, and optionally an edited data frame with non-knowledge workers removed, or the full data frame with the kw/nkw flag added.
identify_nkw(data, collab_threshold = 5, return = "data_summary")
identify_nkw(data, collab_threshold = 5, return = "data_summary")
data |
A Standard Person Query dataset in the form of a data frame. |
collab_threshold |
Positive numeric value representing the collaboration
hours threshold that should be exceeded as an average for the entire
analysis period for the employee to be categorized as a knowledge worker
("kw"). Default is set to 5 collaboration hours. Any versions after v1.4.3,
this uses a "greater than or equal to" logic ( |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"text"
: string. Returns a diagnostic message.
"data_with_flag"
: data frame. Original input data with an additional
column containing the kw
/nkw
flag.
"data_clean"
: data frame. Data frame with non-knowledge workers
excluded.
"data_summary"
: data frame. A summary table by organization listing
the number and % of non-knowledge workers.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
This function takes in a selected metric and uses
z-score (number of standard deviations) to identify outliers
across time. There are applications in this for identifying
weeks with abnormally low collaboration activity, e.g. holidays.
Time as a grouping variable can be overridden with the group_var
argument.
identify_outlier(data, group_var = "Date", metric = "Collaboration_hours")
identify_outlier(data, group_var = "Date", metric = "Collaboration_hours")
data |
A Standard Person Query dataset in the form of a data frame. |
group_var |
A string with the name of the grouping variable.
Defaults to |
metric |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
Returns a data frame with Date
(if grouping variable is not set),
the metric, and the corresponding z-score.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
identify_outlier(sq_data, metric = "Collaboration_hours")
identify_outlier(sq_data, metric = "Collaboration_hours")
This function scans a standard query output for groups with of employees under the privacy threshold. The method consists in reviewing each individual HR attribute, and count the distinct people within each group.
identify_privacythreshold( data, hrvar = extract_hr(data), mingroup = 5, return = "table" )
identify_privacythreshold( data, hrvar = extract_hr(data), mingroup = 5, return = "table" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
A list of HR Variables to consider in the scan. Defaults to all HR attributes identified. |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"table"
: data frame. A summary table of groups that fall below the
privacy threshold.
"text"
: string. A diagnostic message.
Returns a ggplot object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
# Return a summary table dv_data %>% identify_privacythreshold(return = "table") # Return a diagnostic message dv_data %>% identify_privacythreshold(return = "text")
# Return a summary table dv_data %>% identify_privacythreshold(return = "table") # Return a diagnostic message dv_data %>% identify_privacythreshold(return = "text")
Pass an advanced insights query dataset and return the identified query type as a string. This function uses variable name string matching to 'guess' the query type of the data frame.
identify_query(data, threshold = 2)
identify_query(data, threshold = 2)
data |
An advanced insights query dataset in the form of a data frame. If the data is not identified as a valid dataset, the function will return an error. |
threshold |
Debugging use only. Increase to raise the 'strictness' of the guessing algorithm. Defaults to 2. |
String. A diagnostic message is returned.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
identify_query(sq_data) # Standard query identify_query(mt_data) # Meeting query identify_query(em_data) # Hourly collaboration query ## Not run: identify_query(iris) # Will return an error identify_query(mtcars) # Will return an error ## End(Not run)
identify_query(sq_data) # Standard query identify_query(mt_data) # Meeting query identify_query(em_data) # Hourly collaboration query ## Not run: identify_query(iris) # Will return an error identify_query(mtcars) # Will return an error ## End(Not run)
This function uses outlook calendar settings for start and end time of work
day to identify work shifts. The relevant variables are
WorkingStartTimeSetInOutlook
and WorkingEndTimeSetInOutlook
.
identify_shifts(data, return = "plot")
identify_shifts(data, return = "plot")
data |
A data frame containing data from the Hourly Collaboration query. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. A bar plot for the weekly count of shifts.
"table"
: data frame. A summary table for the count of shifts.
"data
: data frame. Input data appended with the Shifts
columns.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
Other Working Patterns:
flex_index()
,
identify_shifts_wp()
,
plot_flex_index()
,
workpatterns_area()
,
workpatterns_classify()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()
# Return plot dv_data %>% identify_shifts() # Return summary table dv_data %>% identify_shifts(return = "table")
# Return plot dv_data %>% identify_shifts() # Return summary table dv_data %>% identify_shifts(return = "table")
This function uses the Hourly Collaboration query and computes binary
activity to identify the 'behavioural' work shift. This is a distinct method
to identify_shifts()
, which instead uses outlook calendar settings for
start and end time of work day to identify work shifts. The two methods can
be compared to gauge the accuracy of existing Outlook settings.
identify_shifts_wp( data, signals = c("email", "IM"), active_threshold = 1, start_hour = 9, end_hour = 17, percent = FALSE, n = 10, return = "plot" )
identify_shifts_wp( data, signals = c("email", "IM"), active_threshold = 1, start_hour = 9, end_hour = 17, percent = FALSE, n = 10, return = "plot" )
data |
A data frame containing data from the Hourly Collaboration query. |
signals |
Character vector to specify which collaboration metrics to use:
|
active_threshold |
A numeric value specifying the minimum number of signals to be greater than in order to qualify as active. Defaults to 0. |
start_hour |
A character vector specifying starting hours, e.g.
|
end_hour |
A character vector specifying starting hours, e.g. |
percent |
Logical value to determine whether to show labels as
percentage signs. Defaults to |
n |
Numeric value specifying number of shifts to show. Defaults to 10.
This parameter is only used when |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. A bar plot for the weekly count of shifts.
"table"
: data frame. A summary table for the count of shifts.
"data
: data frame. Input data appended with the following columns:
Start
End
DaySpan
Shifts
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
Other Working Patterns:
flex_index()
,
identify_shifts()
,
plot_flex_index()
,
workpatterns_area()
,
workpatterns_classify()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()
# Return plot em_data %>% identify_shifts_wp() # Return plot - showing percentages em_data %>% identify_shifts_wp(percent = TRUE) # Return table em_data %>% identify_shifts_wp(return = "table")
# Return plot em_data %>% identify_shifts_wp() # Return plot - showing percentages em_data %>% identify_shifts_wp(percent = TRUE) # Return table em_data %>% identify_shifts_wp(return = "table")
This function calculates employee tenure based on different input dates.
identify_tenure
uses the latest Date available if user selects "Date",
but also have flexibility to select a specific date, e.g. "1/1/2020".
identify_tenure( data, end_date = "Date", beg_date = "HireDate", maxten = 40, return = "message" )
identify_tenure( data, end_date = "Date", beg_date = "HireDate", maxten = 40, return = "message" )
data |
A Standard Person Query dataset in the form of a data frame. |
end_date |
A string specifying the name of the date variable representing the latest date. Defaults to "Date". |
beg_date |
A string specifying the name of the date variable representing the hire date. Defaults to "HireDate". |
maxten |
A numeric value representing the maximum tenure. If the tenure exceeds this threshold, it would be accounted for in the flag message. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"message"
: message on console with a diagnostic message.
"text"
: string containing a diagnostic message.
"plot"
: 'ggplot' object. A line plot showing tenure.
"data_cleaned"
: data frame filtered only by rows with tenure values
lying within the threshold.
"data_dirty"
: data frame filtered only by rows with tenure values
lying outside the threshold.
"data"
: data frame with the PersonId
and a calculated variable called
TenureYear
is returned.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
library(dplyr) # Add HireDate to sq_data sq_data2 <- sq_data %>% mutate(HireDate = as.Date("1/1/2015", format = "%m/%d/%Y")) identify_tenure(sq_data2)
library(dplyr) # Add HireDate to sq_data sq_data2 <- sq_data %>% mutate(HireDate = as.Date("1/1/2015", format = "%m/%d/%Y")) identify_tenure(sq_data2)
Uses import_wpa()
to read a Workplace Analytics query in
'.csv' and convert this into the serialized '.csv' format which is much
faster to read. The 'fst' package must be installed, or an error message is
returned.
import_to_fst(path, ...)
import_to_fst(path, ...)
path |
String containing the path to the Workplace Analytics query to be
imported. The input file must be a CSV file, and the file extension must be
explicitly entered, e.g. |
... |
Additional arguments to pass to |
The fst package provides a way to serialize
data frames in R which makes loading data much faster than CSV.
import_to_fst()
converts a CSV file into a FST file in the specified
directory.
Once this FST file is created, it can be read into R using
fst::read_fst()
. Since import_to_fst()
only does conversion but not
loading, it should normally only be run once at the beginning of each piece
of analysis, and fst::read_fst()
should take over the job of data loading
at the start of your analysis script.
Internally, import_to_fst()
uses import_wpa()
, and additional arguments
to import_wpa()
can be passed with ...
.
There is no return value. A file with '.fst' extension is written to the same directory where the '.csv' file is read in.
Other Import and Export:
copy_df()
,
create_dt()
,
export()
,
import_wpa()
,
standardise_pq()
Import a Workplace Analytics Query from a local CSV File, with variable classifications optimised for other 'wpa' functions.
import_wpa(x, standardise = FALSE, encoding = "UTF-8")
import_wpa(x, standardise = FALSE, encoding = "UTF-8")
x |
String containing the path to the Workplace Analytics query to be
imported. The input file must be a CSV file, and the file extension must be
explicitly entered, e.g. |
standardise |
logical. If TRUE, |
encoding |
String to specify encoding to be used within
|
import_wpa()
uses data.table::fread()
to import CSV files for speed,
and by default stringsAsFactors
is set to FALSE.
A data frame is returned by the function (not a data.table
).
A tibble
is returned.
Other Import and Export:
copy_df()
,
create_dt()
,
export()
,
import_to_fst()
,
standardise_pq()
Plot the internal network metrics for a HR variable as a scatter plot, showing Internal Network Breadth as the vertical axis and Internal Network Size as the horizontal axis.
internal_network_plot( data, hrvar = "Organization", mingroup = 5, return = "plot", bubble_size = c(1, 8) )
internal_network_plot( data, hrvar = "Organization", mingroup = 5, return = "plot", bubble_size = c(1, 8) )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation" |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the
following strings: - |
bubble_size |
A numeric vector of length two to specify the size range of the bubbles |
Uses the metrics Internal_network_size
and
Networking_outside_organization
.
'ggplot' object showing a bubble plot with internal network size as the x-axis and internal network breadth as the y-axis. The size of the bubbles represent the number of unique employees in each group.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Network:
external_network_plot()
,
g2g_data
,
network_describe()
,
network_g2g()
,
network_p2p()
,
network_summary()
,
p2p_data_sim()
# Return plot internal_network_plot(sq_data, return = "plot") # Return summary table internal_network_plot(sq_data, return = "table")
# Return plot internal_network_plot(sq_data, return = "plot") # Return summary table internal_network_plot(sq_data, return = "table")
This function uses regular expression to determine whether a string is of the
format "mdy"
, separated by "-"
, "/"
, or "."
, returning a logical
vector.
is_date_format(string)
is_date_format(string)
string |
Character string to test whether is a date format. |
logical value indicating whether the string is a date format.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
is_date_format("1/5/2020")
is_date_format("1/5/2020")
This function uses the Information Value algorithm to predict which Workplace Analytics metrics are most explained by the change in dates.
IV_by_period( data, before_start = min(as.Date(data$Date, "%m/%d/%Y")), before_end, after_start = as.Date(before_end) + 1, after_end = max(as.Date(data$Date, "%m/%d/%Y")), mybins = 10, return = "table" )
IV_by_period( data, before_start = min(as.Date(data$Date, "%m/%d/%Y")), before_end, after_start = as.Date(before_end) + 1, after_end = max(as.Date(data$Date, "%m/%d/%Y")), mybins = 10, return = "table" )
data |
Person Query as a dataframe including date column named "Date"
This function assumes the data format is |
before_start |
Start date of "before" time period in |
before_end |
End date of "before" time period in |
after_start |
Start date of "after" time period in |
after_end |
End date of "after" time period in |
mybins |
Number of bins to cut the data into for Information Value analysis. Defaults to 10. |
return |
String specifying what to return. The current only valid
option is |
data frame containing all the variables and the corresponding Information Value.
Mark Powers [email protected]
Other Variable Association:
IV_report()
,
create_IV()
,
plot_WOE()
Other Information Value:
IV_report()
,
create_IV()
,
plot_WOE()
Other Time-series:
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_trend()
,
period_change()
# Returns a data frame sq_data %>% IV_by_period( before_start = "2019-12-15", before_end = "2019-12-29", after_start = "2020-01-05", after_end = "2020-01-26" )
# Returns a data frame sq_data %>% IV_by_period( before_start = "2019-12-15", before_end = "2019-12-29", after_start = "2020-01-05", after_end = "2020-01-26" )
The function generates an interactive HTML report using Standard Person Query data as an input. The report contains a full Information Value analysis, a data exploration technique that helps determine which columns in a data set have predictive power or influence on the value of a specified dependent variable.
IV_report( data, predictors = NULL, outcome, bins = 5, max_var = 9, path = "IV report", timestamp = TRUE )
IV_report( data, predictors = NULL, outcome, bins = 5, max_var = 9, path = "IV report", timestamp = TRUE )
data |
A Standard Person Query dataset in the form of a data frame. |
predictors |
A character vector specifying the columns to be used as predictors. Defaults to NULL, where all numeric vectors in the data will be used as predictors. |
outcome |
A string specifying a binary variable, i.e. can only contain the values 1 or 0. |
bins |
Number of bins to use in |
max_var |
Numeric value to represent the maximum number of variables to show on plots. |
path |
Pass the file path and the desired file name, excluding the file
extension. For example, |
timestamp |
Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE. |
An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.
Below is an example on how to run the report.
library(dplyr) sq_data %>% mutate(CH_binary = ifelse(Collaboration_hours > 12, 1, 0)) %>% # Simulate binary variable IV_report(outcome = "CH_binary", predictors = c("Email_hours", "Workweek_span"))
Other Reports:
capacity_report()
,
coaching_report()
,
collaboration_report()
,
connectivity_report()
,
generate_report()
,
meeting_tm_report()
,
read_preamble()
,
subject_validate_report()
,
validation_report()
,
workpatterns_report()
Other Variable Association:
IV_by_period()
,
create_IV()
,
plot_WOE()
Other Information Value:
IV_by_period()
,
create_IV()
,
plot_WOE()
Convenience wrapper around jitter()
to add a layer of
anonymity to a query. This can be used in combination with anonymise()
to
produce a demo dataset from real data.
jitter_metrics(data, cols = NULL, ...)
jitter_metrics(data, cols = NULL, ...)
data |
Data frame containing a query. |
cols |
Character vector containing the metrics to jitter. When set to
|
... |
Additional arguments to pass to |
anonymise
jittered <- jitter_metrics(sq_data, cols = "Collaboration_hours") head( data.frame( original = sq_data$Collaboration_hours, jittered = jittered$Collaboration_hours ) )
jittered <- jitter_metrics(sq_data, cols = "Collaboration_hours") head( data.frame( original = sq_data$Collaboration_hours, jittered = jittered$Collaboration_hours ) )
Returns a heatmapped table by default, with options to return a table.
keymetrics_scan( data, hrvar = "Organization", mingroup = 5, metrics = c("Workweek_span", "Collaboration_hours", "After_hours_collaboration_hours", "Meetings", "Meeting_hours", "After_hours_meeting_hours", "Low_quality_meeting_hours", "Meeting_hours_with_manager_1_on_1", "Meeting_hours_with_manager", "Emails_sent", "Email_hours", "After_hours_email_hours", "Generated_workload_email_hours", "Total_focus_hours", "Internal_network_size", "Networking_outside_organization", "External_network_size", "Networking_outside_company"), return = "plot", low = rgb2hex(7, 111, 161), mid = rgb2hex(241, 204, 158), high = rgb2hex(216, 24, 42), textsize = 2 )
keymetrics_scan( data, hrvar = "Organization", mingroup = 5, metrics = c("Workweek_span", "Collaboration_hours", "After_hours_collaboration_hours", "Meetings", "Meeting_hours", "After_hours_meeting_hours", "Low_quality_meeting_hours", "Meeting_hours_with_manager_1_on_1", "Meeting_hours_with_manager", "Emails_sent", "Email_hours", "After_hours_email_hours", "Generated_workload_email_hours", "Total_focus_hours", "Internal_network_size", "Networking_outside_organization", "External_network_size", "Networking_outside_company"), return = "plot", low = rgb2hex(7, 111, 161), mid = rgb2hex(241, 204, 158), high = rgb2hex(216, 24, 42), textsize = 2 )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
metrics |
A character vector containing the variable names to calculate averages of. |
return |
Character vector specifying what to return, defaults to "plot". Valid inputs are "plot" and "table". |
low |
String specifying colour code to use for low-value metrics.
Arguments are passed directly to |
mid |
String specifying colour code to use for mid-value metrics.
Arguments are passed directly to |
high |
String specifying colour code to use for high-value metrics.
Arguments are passed directly to |
textsize |
A numeric value specifying the text size to show in the plot. |
Returns a ggplot object by default, when 'plot'
is passed in return
.
When 'table'
is passed, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
# Heatmap plot is returned by default keymetrics_scan(sq_data) # Heatmap plot with custom colours keymetrics_scan(sq_data, low = "purple", high = "yellow") # Return summary table keymetrics_scan(sq_data, hrvar = "LevelDesignation", return = "table")
# Heatmap plot is returned by default keymetrics_scan(sq_data) # Heatmap plot with custom colours keymetrics_scan(sq_data, low = "purple", high = "yellow") # Return summary table keymetrics_scan(sq_data, hrvar = "LevelDesignation", return = "table")
Return a heatmapped table directly from the aggregated / summarised data.
Unlike keymetrics_scan()
which performs a person-level aggregation, there
is no calculation for keymetrics_scan_asis()
and the values are rendered as
they are passed into the function.
keymetrics_scan_asis( data, row_var, col_var, group_var = col_var, value_var = "value", title = NULL, subtitle = NULL, caption = NULL, ylab = row_var, xlab = "Metrics", rounding = 1, low = rgb2hex(7, 111, 161), mid = rgb2hex(241, 204, 158), high = rgb2hex(216, 24, 42), textsize = 2 )
keymetrics_scan_asis( data, row_var, col_var, group_var = col_var, value_var = "value", title = NULL, subtitle = NULL, caption = NULL, ylab = row_var, xlab = "Metrics", rounding = 1, low = rgb2hex(7, 111, 161), mid = rgb2hex(241, 204, 158), high = rgb2hex(216, 24, 42), textsize = 2 )
data |
data frame containing data to plot. It is recommended to provide data in a 'long' table format where one grouping column forms the rows, a second column forms the columns, and a third numeric columns forms the |
row_var |
String containing name of the grouping variable that will form the rows of the heatmapped table. |
col_var |
String containing name of the grouping variable that will form the columns of the heatmapped table. |
group_var |
String containing name of the grouping variable by which
heatmapping would apply. Defaults to |
value_var |
String containing name of the value variable that will form
the values of the heatmapped table. Defaults to |
title |
Title of the plot. |
subtitle |
Subtitle of the plot. |
caption |
Caption of the plot. |
ylab |
Y-axis label for the plot (group axis) |
xlab |
X-axis label of the plot (bar axis). |
rounding |
Numeric value to specify number of digits to show in data labels |
low |
String specifying colour code to use for low-value metrics.
Arguments are passed directly to |
mid |
String specifying colour code to use for mid-value metrics.
Arguments are passed directly to |
high |
String specifying colour code to use for high-value metrics.
Arguments are passed directly to |
textsize |
A numeric value specifying the text size to show in the plot. |
ggplot object for a heatmap table.
library(dplyr) # Compute summary table out_df <- sq_data %>% group_by(Organization) %>% summarise( across( .cols = c( Workweek_span, Collaboration_hours ), .fns = ~median(., na.rm = TRUE) ), .groups = "drop" ) %>% tidyr::pivot_longer( cols = c("Workweek_span", "Collaboration_hours"), names_to = "metrics" ) keymetrics_scan_asis( data = out_df, col_var = "metrics", row_var = "Organization" ) # Show data the other way round keymetrics_scan_asis( data = out_df, col_var = "Organization", row_var = "metrics", group_var = "metrics" )
library(dplyr) # Compute summary table out_df <- sq_data %>% group_by(Organization) %>% summarise( across( .cols = c( Workweek_span, Collaboration_hours ), .fns = ~median(., na.rm = TRUE) ), .groups = "drop" ) %>% tidyr::pivot_longer( cols = c("Workweek_span", "Collaboration_hours"), names_to = "metrics" ) keymetrics_scan_asis( data = out_df, col_var = "metrics", row_var = "Organization" ) # Show data the other way round keymetrics_scan_asis( data = out_df, col_var = "Organization", row_var = "metrics", group_var = "metrics" )
The Ljung-Box (1978) modified portmanteau test. In the
multivariate time series, this test statistic is asymptotically equal to
Hosking
.
This method and the bottom documentation is taken directly from the original 'portes' package.
LjungBox( obj, lags = seq(5, 30, 5), order = 0, season = 1, squared.residuals = FALSE )
LjungBox( obj, lags = seq(5, 30, 5), order = 0, season = 1, squared.residuals = FALSE )
obj |
a univariate or multivariate series with class "numeric", "matrix", "ts", or ("mts" "ts"). It can be also an object of fitted time-series model with class "ar", "arima0", "Arima", ("ARIMA forecast ARIMA Arima"), "lm", ("glm" "lm"), or "varest". obj may also an object with class "list" (see details and following examples). |
lags |
vector of lag auto-cross correlation coefficients used for
|
order |
Default is zero for testing the randomness of a given sequence with class "numeric", "matrix", "ts", or ("mts" "ts"). In general order equals to the number of estimated parameters in the fitted model. If obj is an object with class "ar", "arima0", "Arima", "varest", ("ARIMA forecast ARIMA Arima"), or "list" then no need to enter the value of order as it will be automatically determined. For obj with other classes, the order is needed for degrees of freedom of asymptotic chi-square distribution. |
season |
seasonal periodicity for testing seasonality. Default is 1 for testing the non seasonality cases. |
squared.residuals |
if |
However the portmanteau test statistic can be applied directly on the output objects from the built in R functions ar(), ar.ols(), ar.burg(), ar.yw(), ar.mle(), arima(), arim0(), Arima(), auto.arima(), lm(), glm(), and VAR(), it works with output objects from any fitted model. In this case, users should write their own function to fit any model they want, where they may use the built in R functions FitAR(), garch(), garchFit(), fracdiff(), tar(), etc. The object obj represents the output of this function. This output must be a list with at least two outcomes: the fitted residual and the order of the fitted model (list(res = ..., order = ...)). See the following example with the function FitModel().
Note: In stats R, the function Box.test was built to compute the Box and Pierce (1970) and Ljung and Box (1978) test statistics only in the univariate case where we can not use more than one single lag value at a time. The functions BoxPierce and LjungBox are more accurate than Box.test function and can be used in the univariate or multivariate time series at vector of different lag values as well as they can be applied on an output object from a fitted model described in the description of the function BoxPierce.
The Ljung and Box test statistic with the associated p-values for different
lags based on the asymptotic chi-square distribution with k^2(lags-order)
degrees of freedom.
Esam Mahdi and A.I. McLeod
Ljung, G.M. and Box, G.E.P (1978). "On a Measure of Lack of Fit in Time Series Models". Biometrika, 65, 297-303.
x <- rnorm(100) LjungBox(x) # univariate test x <- cbind(rnorm(100),rnorm(100)) LjungBox(x) # multivariate test
x <- rnorm(100) LjungBox(x) # univariate test x <- cbind(rnorm(100),rnorm(100)) LjungBox(x) # multivariate test
This is a wrapper around calculate_IV()
to loop through multiple predictors
and calculate their Weight of Evidence (WOE) and Information Value (IV) with
respect to an outcome variable.
map_IV(data, predictors = NULL, outcome, bins = 10)
map_IV(data, predictors = NULL, outcome, bins = 10)
data |
Data frame containing the data. |
predictors |
Character vector containing the names of the predictor
variables. If |
outcome |
String containing the name of the outcome variable. |
bins |
Numeric value representing the number of bins to use. Defaults to 10. |
The approach used mirrors the one used in Information::create_infotables()
.
A list of data frames is returned as an output. The first layer of
the list contains Tables
and Summary
:
Tables
is a list of data frames containing the WOE and cumulative sum
IV for each predictor.
Summary
is a single data frame containing the IV for all predictors.
This function allows you to scale vectors or an entire data frame using the max-min scaling method A numeric vector is always returned.
maxmin(x)
maxmin(x)
x |
Pass a vector or the required columns of a data frame through this argument. |
This is used within keymetrics_scan()
to enable row-wise
heatmapping. Originally implemented in
https://github.com/martinctc/surveytoolbox.
Returns a numeric vector with the input rescaled.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
numbers <- c(15, 40, 10, 2) maxmin(numbers)
numbers <- c(15, 40, 10, 2) maxmin(numbers)
Analyze Meeting Hours distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
meeting_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(5, 10, 15) )
meeting_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(5, 10, 15) )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
cut |
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20) |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Meetings:
meeting_extract()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_skim()
,
meeting_summary()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
# Return plot meeting_dist(sq_data, hrvar = "Organization") # Return summary table meeting_dist(sq_data, hrvar = "Organization", return = "table") # Return result with a custom specified breaks meeting_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))
# Return plot meeting_dist(sq_data, hrvar = "Organization") # Return summary table meeting_dist(sq_data, hrvar = "Organization", return = "table") # Return result with a custom specified breaks meeting_dist(sq_data, hrvar = "LevelDesignation", cut = c(4, 7, 9))
Pass a Standard Meeting Query and extract the top low engagement meetings.
meeting_extract( data, recurring_only = TRUE, top_n = 30, fte_month = 180, fte_week = 40, return = "table" )
meeting_extract( data, recurring_only = TRUE, top_n = 30, fte_month = 180, fte_week = 40, return = "table" )
data |
Data frame containing a Standard Meeting Query to pass through. |
recurring_only |
Logical value indicating whether to only filter by recurring meetings. |
top_n |
Numeric value for the top number of results to return in the output. |
fte_month |
Numeric value for the assumed number of employee hours per month for conversion calculations. Defaults to 180. |
fte_week |
Numeric value for the assumed number of employee hours per week for conversion calculations. Defaults to 180. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"table"
: data frame. A summary table containing the top n
low
engagement meetings
"data"
: data frame. Contains the full computed metrics related to the
top n
low engagement meetings
Other Meetings:
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_skim()
,
meeting_summary()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
meeting_extract(mt_data, recurring_only = FALSE, top_n = 10, return = "table")
meeting_extract(mt_data, recurring_only = FALSE, top_n = 10, return = "table")
Analyze weekly meeting hours distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.
meeting_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
meeting_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric Meeting_hours
.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A jittered scatter plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Meetings:
meeting_dist()
,
meeting_extract()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_skim()
,
meeting_summary()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
# Return plot meeting_fizz(sq_data, hrvar = "Organization", return = "plot") # Return summary table meeting_fizz(sq_data, hrvar = "Organization", return = "table")
# Return plot meeting_fizz(sq_data, hrvar = "Organization", return = "plot") # Return summary table meeting_fizz(sq_data, hrvar = "Organization", return = "table")
Provides a week by week view of meeting time, visualised as line charts. By default returns a line chart for meeting hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.
meeting_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
meeting_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted line plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Meetings:
meeting_dist()
,
meeting_extract()
,
meeting_fizz()
,
meeting_quality()
,
meeting_rank()
,
meeting_skim()
,
meeting_summary()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
# Return a line plot meeting_line(sq_data, hrvar = "LevelDesignation") # Return summary table meeting_line(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a line plot meeting_line(sq_data, hrvar = "LevelDesignation") # Return summary table meeting_line(sq_data, hrvar = "LevelDesignation", return = "table")
Return an analysis of Meeting Quality with a bubble plot, using a Standard Person Query as an input.
meeting_quality( data, hrvar = "Organization", metric_x = "Low_quality_meeting_hours", mingroup = 5, return = "plot" )
meeting_quality( data, hrvar = "Organization", metric_x = "Low_quality_meeting_hours", mingroup = 5, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "LevelDesignation" |
metric_x |
String specifying which variable to show in the x-axis when returning a plot. Must be one of the following:
If the provided metric name is not found in the data, the function will use the first matched metric from the above list. |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the
following strings: - |
A different output is returned depending on the value passed to the
return
argument:
"plot"
: 'ggplot' object. A bubble plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Meetings:
meeting_dist()
,
meeting_extract()
,
meeting_fizz()
,
meeting_line()
,
meeting_rank()
,
meeting_skim()
,
meeting_summary()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
# Return plot meeting_quality(sq_data, return = "plot") # Return plot - showing multi-tasking % meeting_quality(sq_data, metric_x = "Multitasking_meeting_hours", return = "plot") # Return summary table meeting_quality(sq_data, return = "table")
# Return plot meeting_quality(sq_data, return = "plot") # Return plot - showing multi-tasking % meeting_quality(sq_data, metric_x = "Multitasking_meeting_hours", return = "plot") # Return summary table meeting_quality(sq_data, return = "table")
This function scans a standard query output for groups with high levels of Weekly Meeting Collaboration. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by hours of digital collaboration.
meeting_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" )
meeting_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
mode |
String to specify calculation mode. Must be either:
|
plot_mode |
Numeric vector to determine which plot mode to return. Must
be either
|
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric Meeting_hours
.
See create_rank()
for applying the same analysis to a different metric.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bubble plot where the x-axis represents the
metric, the y-axis represents the HR attributes, and the size of the
bubbles represent the size of the organizations. Note that there is no
plot output if mode
is set to "combine"
.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Meetings:
meeting_dist()
,
meeting_extract()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_skim()
,
meeting_summary()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
# Return rank table meeting_rank( data = sq_data, return = "table" ) # Return plot meeting_rank( data = sq_data, return = "plot" )
# Return rank table meeting_rank( data = sq_data, return = "table" ) # Return plot meeting_rank( data = sq_data, return = "plot" )
This function returns a skim summary in the console when provided a standard query in the input.
meeting_skim(data, return = "message")
meeting_skim(data, return = "message")
data |
A standard person query data in the form of a data frame. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"message"
: message in console.
"text"
: string.
"table"
: data frame.
Other Meetings:
meeting_dist()
,
meeting_extract()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
meeting_skim(sq_data)
meeting_skim(sq_data)
Provides an overview analysis of weekly meeting hours. Returns a bar plot showing average weekly meeting hours by default. Additional options available to return a summary table.
meeting_summary(data, hrvar = "Organization", mingroup = 5, return = "plot") meeting_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
meeting_summary(data, hrvar = "Organization", mingroup = 5, return = "plot") meeting_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Meetings:
meeting_dist()
,
meeting_extract()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_skim()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
# Return a ggplot bar chart meeting_summary(sq_data, hrvar = "LevelDesignation") # Return a summary table meeting_summary(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a ggplot bar chart meeting_summary(sq_data, hrvar = "LevelDesignation") # Return a summary table meeting_summary(sq_data, hrvar = "LevelDesignation", return = "table")
Create a text mining report in HTML based on Meeting Subject Lines
meeting_tm_report( data, path = "meeting text mining report", stopwords = NULL, timestamp = TRUE, keep = 100, seed = 100 )
meeting_tm_report( data, path = "meeting text mining report", stopwords = NULL, timestamp = TRUE, keep = 100, seed = 100 )
data |
A Meeting Query dataset in the form of a data frame. |
path |
Pass the file path and the desired file name, excluding the file
extension. For example, |
stopwords |
A character vector OR a single-column data frame labelled
|
timestamp |
Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE. |
keep |
A numeric vector specifying maximum number of words to keep. |
seed |
A numeric vector to set seed for random generation. |
An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.
Other Reports:
IV_report()
,
capacity_report()
,
coaching_report()
,
collaboration_report()
,
connectivity_report()
,
generate_report()
,
read_preamble()
,
subject_validate_report()
,
validation_report()
,
workpatterns_report()
Other Meetings:
meeting_dist()
,
meeting_extract()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_skim()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
Other Text-mining:
pairwise_count()
,
subject_validate()
,
subject_validate_report()
,
tm_clean()
,
tm_cooc()
,
tm_freq()
,
tm_wordcloud()
Provides a week by week view of meeting time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.
meeting_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
meeting_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
Character vector specifying what to return, defaults to
|
Uses the metric Meeting_hours
.
Returns a 'ggplot' object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Meetings:
meeting_dist()
,
meeting_extract()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_skim()
,
meeting_summary()
,
meeting_tm_report()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
Calculate the hour distribution of internal meeting types. This
is a wrapper around meetingtype_dist_mt()
and meetingtype_dist_ca()
,
depending on whether a Meeting Query or a Ways of Working Assessment Query is
passed as an input.
meetingtype_dist(data, hrvar = NULL, mingroup = 5, return = "plot")
meetingtype_dist(data, hrvar = NULL, mingroup = 5, return = "plot")
data |
Data frame. If a meeting query, must contain the variables
|
hrvar |
Character string to specify the HR attribute to split the data by. Note that this is only applicable if a Ways of Working Assessment query is passed to the function. If a Meeting Query is passed instead, this argument is ignored. |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. Only applicable when using a Ways of Working Assessment query. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. A matrix of meeting types with duration and the
number of attendees. If using a Ways of Working Assessment query with
meetingtype_dist_ca()
and an HR attribute with more than one unique value
is passed to hrvar
, a stacked bar plot is returned.
"table"
: data frame. A summary table.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Meetings:
meeting_dist()
,
meeting_extract()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_skim()
,
meeting_summary()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
# Implementation using Standard Meeting Query meetingtype_dist(mt_data)
# Implementation using Standard Meeting Query meetingtype_dist(mt_data)
Calculate the hour distribution of internal meeting types, using a Ways of Working Assessment Query with core Workplace Analytics variables as an input.
meetingtype_dist_ca(data, hrvar = NULL, mingroup = 5, return = "plot")
meetingtype_dist_ca(data, hrvar = NULL, mingroup = 5, return = "plot")
data |
Meeting Query data frame. Must contain the variables |
hrvar |
Character string to specify the HR attribute to split the data by. |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. A matrix of meeting types with duration and the
number of attendees. If using a Ways of Working Assessment query with
meetingtype_dist_ca()
and an HR attribute with more than one unique value
is passed to hrvar
, a stacked bar plot is returned.
"table"
: data frame. A summary table.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Meetings:
meeting_dist()
,
meeting_extract()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_skim()
,
meeting_summary()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_mt()
,
meetingtype_summary()
Calculate the hour distribution of internal meeting types, using a Meeting Query with core Workplace Analytics variables as an input.
meetingtype_dist_mt(data, return = "plot")
meetingtype_dist_mt(data, return = "plot")
data |
Meeting Query data frame. Must contain the variables |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. A matrix of meeting types with duration and the
number of attendees. If using a Ways of Working Assessment query with
meetingtype_dist_ca()
and an HR attribute with more than one unique value
is passed to hrvar
, a stacked bar plot is returned.
"table"
: data frame. A summary table.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Meetings:
meeting_dist()
,
meeting_extract()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_skim()
,
meeting_summary()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_summary()
This function creates a bar chart showing the percentage of meeting hours which are spent in long or large meetings.
meetingtype_summary( data, hrvar = "Organization", mingroup = 5, return = "plot" ) meetingtype_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
meetingtype_summary( data, hrvar = "Organization", mingroup = 5, return = "plot" ) meetingtype_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
Ways of Working Assessment query in the form of a data frame. Requires the following variables:
|
hrvar |
HR Variable by which to split metrics, defaults to
|
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. A horizontal bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Meetings:
meeting_dist()
,
meeting_extract()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_skim()
,
meeting_summary()
,
meeting_tm_report()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
Analyze degree of attendance between employes and their managers. Returns a stacked bar plot of different buckets of coattendance. Additional options available to return a table with distribution elements.
mgrcoatt_dist(data, hrvar = "Organization", mingroup = 5, return = "plot")
mgrcoatt_dist(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. A stacked bar plot showing the distribution of
manager co-attendance time.
"table"
: data frame. A summary table for manager co-attendance time.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Managerial Relations:
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
# Return plot mgrcoatt_dist(sq_data, hrvar = "Organization", return = "plot") # Return summary table mgrcoatt_dist(sq_data, hrvar = "Organization", return = "table")
# Return plot mgrcoatt_dist(sq_data, hrvar = "Organization", return = "plot") # Return summary table mgrcoatt_dist(sq_data, hrvar = "Organization", return = "table")
Generate the Manager-Relationship 2x2 matrix, returning a 'ggplot' object by default. Additional options available to return a "wide" or "long" summary table.
mgrrel_matrix( data, hrvar = NULL, mingroup = 5, return = "plot", plot_colors = c("#fe7f4f", "#b4d5dd", "#facebc", "#fcf0eb"), threshold = 15 )
mgrrel_matrix( data, hrvar = NULL, mingroup = 5, return = "plot", plot_colors = c("#fe7f4f", "#b4d5dd", "#facebc", "#fcf0eb"), threshold = 15 )
data |
Standard Person Query data to pass through. Accepts a data frame. |
hrvar |
HR Variable by which to split metrics. Accepts a character
vector, e.g. "Organization". Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
plot_colors |
Pass a character vector of length 4 containing HEX codes to specify colors to use in plotting. |
threshold |
Specify a numeric value to determine threshold (in minutes) for 1:1 manager hours. Defaults to 15. |
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. When NULL
is passed to hrvar
, a two-by-two
grid where the size of the grid represents total percentage of employees is
returned. Otherwise, a horizontal stacked bar plot is returned.
"table"
: data frame. A summary table is returned.
"data"
: data frame. A long table grouped at the PersonId
level with
the following columns:
PersonId
HR variable supplied to hrvar
CoattendanceRate
Meeting_hours_with_manager_1_on_1
mgr1on1
Type
Lucas Hogner [email protected]
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Managerial Relations:
mgrcoatt_dist()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
# Return matrix mgrrel_matrix(sq_data) # Return stacked bar plot mgrrel_matrix(sq_data, hrvar = "Organization") ## Visualize coaching style types # Ensure dplyr is loaded library(dplyr) # Extract PersonId and Coaching Type match_df <- sq_data %>% mgrrel_matrix(return = "data") %>% select(PersonId, Type) # Join and visualize baseline sq_data %>% left_join(match_df, by = "PersonId") %>% keymetrics_scan(hrvar = "Type", return = "plot")
# Return matrix mgrrel_matrix(sq_data) # Return stacked bar plot mgrrel_matrix(sq_data, hrvar = "Organization") ## Visualize coaching style types # Ensure dplyr is loaded library(dplyr) # Extract PersonId and Coaching Type match_df <- sq_data %>% mgrrel_matrix(return = "data") %>% select(PersonId, Type) # Join and visualize baseline sq_data %>% left_join(match_df, by = "PersonId") %>% keymetrics_scan(hrvar = "Type", return = "plot")
A dataset generated from a Meeting Query from Workplace Analytics.
mt_data
mt_data
A data frame with 2001 rows and 30 variables:
...
data frame.
Other Data:
dv_data
,
em_data
,
g2g_data
,
p2p_data_sim()
,
sq_data
Returns a data frame that gives a percentage of the group combinations that
best represent the population provided. Uses a person to person query. This
is used internally within network_p2p()
.
network_describe( data, hrvar = c("Organization", "LevelDesignation", "FunctionType") )
network_describe( data, hrvar = c("Organization", "LevelDesignation", "FunctionType") )
data |
Data frame containing a vertex table output from |
hrvar |
Character vector of length 3 containing the HR attributes to be
used. Defaults to |
data frame. A summary table giving the percentage of group combinations that best represent the provided data.
Tannaz Sattari Tabrizi [email protected]
Other Network:
external_network_plot()
,
g2g_data
,
internal_network_plot()
,
network_g2g()
,
network_p2p()
,
network_summary()
,
p2p_data_sim()
# Simulate a P2P edge list sim_data <- p2p_data_sim() # Perform Louvain Community Detection and return vertices lc_df <- sim_data %>% network_p2p( community = "louvain", return = "data" ) # Join org data from input edge list joined_df <- lc_df %>% dplyr::left_join( sim_data %>% dplyr::select(TieOrigin_PersonId, TieOrigin_Organization, TieOrigin_LevelDesignation, TieOrigin_City), by = c("name" = "TieOrigin_PersonId")) # Describe cluster 2 joined_df %>% # dplyr::filter(cluster == "2") %>% network_describe( hrvar = c( "Organization", "LevelDesignation", "City" ) ) %>% dplyr::glimpse()
# Simulate a P2P edge list sim_data <- p2p_data_sim() # Perform Louvain Community Detection and return vertices lc_df <- sim_data %>% network_p2p( community = "louvain", return = "data" ) # Join org data from input edge list joined_df <- lc_df %>% dplyr::left_join( sim_data %>% dplyr::select(TieOrigin_PersonId, TieOrigin_Organization, TieOrigin_LevelDesignation, TieOrigin_City), by = c("name" = "TieOrigin_PersonId")) # Describe cluster 2 joined_df %>% # dplyr::filter(cluster == "2") %>% network_describe( hrvar = c( "Organization", "LevelDesignation", "City" ) ) %>% dplyr::glimpse()
Pass a data frame containing a group-to-group query and return a network
plot. Automatically handles "Collaborators_within_group"
and
"Other_collaborators"
within query data.
network_g2g( data, time_investor = NULL, collaborator = NULL, metric = "Collaboration_hours", algorithm = "fr", node_colour = "lightblue", exc_threshold = 0.1, org_count = NULL, subtitle = "Collaboration Across Organizations", return = "plot" ) g2g_network( data, time_investor = NULL, collaborator = NULL, metric = "Collaboration_hours", algorithm = "fr", node_colour = "lightblue", exc_threshold = 0.1, org_count = NULL, subtitle = "Collaboration Across Organizations", return = "plot" )
network_g2g( data, time_investor = NULL, collaborator = NULL, metric = "Collaboration_hours", algorithm = "fr", node_colour = "lightblue", exc_threshold = 0.1, org_count = NULL, subtitle = "Collaboration Across Organizations", return = "plot" ) g2g_network( data, time_investor = NULL, collaborator = NULL, metric = "Collaboration_hours", algorithm = "fr", node_colour = "lightblue", exc_threshold = 0.1, org_count = NULL, subtitle = "Collaboration Across Organizations", return = "plot" )
data |
Data frame containing a G2G query. |
time_investor |
String containing the variable name for the Time Investor column. |
collaborator |
String containing the variable name for the Collaborator column. |
metric |
String containing the variable name for metric. Defaults to
|
algorithm |
String to specify the node placement algorithm to be used.
Defaults to |
node_colour |
String or named vector to specify the colour to be used for displaying
nodes. Defaults to
|
exc_threshold |
Numeric value between 0 and 1 specifying the exclusion
threshold to apply. Defaults to 0.1, which means that the plot will only
display collaboration above 10% of a node's total collaboration. This
argument has no impact on |
org_count |
Optional data frame to provide the size of each organization
in the
|
subtitle |
String to override default plot subtitle. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A group-to-group network plot.
"table"
: data frame. An interactive matrix of the network.
"network
: 'igraph' object used for creating the network plot.
"data"
: data frame. A long table of the underlying data.
Other Network:
external_network_plot()
,
g2g_data
,
internal_network_plot()
,
network_describe()
,
network_p2p()
,
network_summary()
,
p2p_data_sim()
# Return a network plot g2g_data %>% network_g2g() # Return a network plot - Meeting hours and 5% threshold g2g_data %>% network_g2g(time_investor = "TimeInvestors_Organization", collaborator = "Collaborators_Organization", metric = "Meeting_hours", exc_threshold = 0.05) # Return a network plot - custom-specific colours # Get labels of orgs and assign random colours org_str <- unique(g2g_data$TimeInvestors_Organization) col_str <- sample( x = c("red", "green", "blue"), size = length(org_str), replace = TRUE ) # Create and supply a named vector to `node_colour` names(col_str) <- org_str g2g_data %>% network_g2g(node_colour = col_str) # Return a network plot with circle layout # Vary node colours and add org sizes org_tb <- hrvar_count( sq_data, hrvar = "Organization", return = "table" ) g2g_data %>% network_g2g(algorithm = "circle", node_colour = "vary", org_count = org_tb) # Return an interaction matrix # Minimum arguments specified g2g_data %>% network_g2g(return = "table")
# Return a network plot g2g_data %>% network_g2g() # Return a network plot - Meeting hours and 5% threshold g2g_data %>% network_g2g(time_investor = "TimeInvestors_Organization", collaborator = "Collaborators_Organization", metric = "Meeting_hours", exc_threshold = 0.05) # Return a network plot - custom-specific colours # Get labels of orgs and assign random colours org_str <- unique(g2g_data$TimeInvestors_Organization) col_str <- sample( x = c("red", "green", "blue"), size = length(org_str), replace = TRUE ) # Create and supply a named vector to `node_colour` names(col_str) <- org_str g2g_data %>% network_g2g(node_colour = col_str) # Return a network plot with circle layout # Vary node colours and add org sizes org_tb <- hrvar_count( sq_data, hrvar = "Organization", return = "table" ) g2g_data %>% network_g2g(algorithm = "circle", node_colour = "vary", org_count = org_tb) # Return an interaction matrix # Minimum arguments specified g2g_data %>% network_g2g(return = "table")
Analyse a person-to-person (P2P) network query, with multiple visualisation and analysis output options. Pass a data frame containing a person-to-person query and return a network visualization. Options are available for community detection using either the Louvain or the Leiden algorithms.
network_p2p( data, hrvar = "Organization", return = "plot", centrality = NULL, community = NULL, weight = NULL, comm_args = NULL, layout = "mds", path = paste("p2p", NULL, sep = "_"), style = "igraph", bg_fill = "#FFFFFF", font_col = "grey20", legend_pos = "right", palette = "rainbow", node_alpha = 0.7, edge_alpha = 1, edge_col = "#777777", node_sizes = c(1, 20), seed = 1 )
network_p2p( data, hrvar = "Organization", return = "plot", centrality = NULL, community = NULL, weight = NULL, comm_args = NULL, layout = "mds", path = paste("p2p", NULL, sep = "_"), style = "igraph", bg_fill = "#FFFFFF", font_col = "grey20", legend_pos = "right", palette = "rainbow", node_alpha = 0.7, edge_alpha = 1, edge_col = "#777777", node_sizes = c(1, 20), seed = 1 )
data |
Data frame containing a person-to-person query. |
hrvar |
String containing the label for the HR attribute. |
return |
A different output is returned depending on the value passed to the
|
centrality |
string to determines which centrality measure is used to
scale the size of the nodes. All centrality measures are automatically
calculated when it is set to one of the below values, and reflected in the
When |
community |
String determining which community detection algorithms to apply. Valid values include:
These values map to the community detection algorithms offered by |
weight |
String to specify which column to use as weights for the
network. To create a graph without weights, supply |
comm_args |
list containing the arguments to be passed through to igraph's clustering algorithms. Arguments must be named. See examples section on how to supply arguments in a named list. |
layout |
String to specify the node placement algorithm to be used.
Defaults to |
path |
File path for saving the PDF output. Defaults to a timestamped path based on current parameters. |
style |
String to specify which plotting style to use for the network plot. Valid values include:
|
bg_fill |
String to specify background fill colour. |
font_col |
String to specify font colour. |
legend_pos |
String to specify position of legend. Defaults to
|
palette |
String specifying the function to generate a colour palette
with a single argument |
node_alpha |
A numeric value between 0 and 1 to specify the transparency of the nodes. Defaults to 0.7. |
edge_alpha |
A numeric value between 0 and 1 to specify the transparency of the edges (only for 'ggraph' mode). Defaults to 1. |
edge_col |
String to specify edge link colour. |
node_sizes |
Numeric vector of length two to specify the range of node
sizes to rescale to, when |
seed |
Seed for the random number generator passed to either
|
A different output is returned depending on the value passed to the return
argument:
'plot'
: return a network plot, interactively within R.
'plot-pdf'
: save a network plot as PDF. This option is recommended when
the graph is large, which make take a long time to run if return = 'plot'
is selected. Use this together with path
to control the save location.
'sankey'
: return a sankey plot combining communities and HR attribute.
This is only valid if a community detection method is selected at
community
.
'table'
: return a vertex summary table with counts in communities and
HR attribute. When centrality
is non-NULL, the average centrality values
are calculated per group.
'data'
: return a vertex data file that matches vertices with
communities and HR attributes.
'network'
: return 'igraph' object.
Other Network:
external_network_plot()
,
g2g_data
,
internal_network_plot()
,
network_describe()
,
network_g2g()
,
network_summary()
,
p2p_data_sim()
p2p_df <- p2p_data_sim(dim = 1, size = 100) # default - ggraph visual network_p2p(data = p2p_df, style = "ggraph") # return vertex table network_p2p(data = p2p_df, return = "table") # return vertex table with community detection network_p2p(data = p2p_df, community = "leiden", return = "table") # leiden - igraph style with custom resolution parameters network_p2p(data = p2p_df, community = "leiden", comm_args = list("resolution" = 0.1)) # louvain - ggraph style, using custom palette network_p2p( data = p2p_df, style = "ggraph", community = "louvain", palette = "heat_colors" ) # leiden - return a sankey visual with custom resolution parameters network_p2p( data = p2p_df, community = "leiden", return = "sankey", comm_args = list("resolution" = 0.1) ) # using `fluid_communities` algorithm with custom parameters network_p2p( data = p2p_df, community = "fluid_communities", comm_args = list("no.of.communities" = 5) ) # Calculate centrality measures and leiden communities, return at node level network_p2p( data = p2p_df, centrality = "betweenness", community = "leiden", return = "data" ) %>% dplyr::glimpse()
p2p_df <- p2p_data_sim(dim = 1, size = 100) # default - ggraph visual network_p2p(data = p2p_df, style = "ggraph") # return vertex table network_p2p(data = p2p_df, return = "table") # return vertex table with community detection network_p2p(data = p2p_df, community = "leiden", return = "table") # leiden - igraph style with custom resolution parameters network_p2p(data = p2p_df, community = "leiden", comm_args = list("resolution" = 0.1)) # louvain - ggraph style, using custom palette network_p2p( data = p2p_df, style = "ggraph", community = "louvain", palette = "heat_colors" ) # leiden - return a sankey visual with custom resolution parameters network_p2p( data = p2p_df, community = "leiden", return = "sankey", comm_args = list("resolution" = 0.1) ) # using `fluid_communities` algorithm with custom parameters network_p2p( data = p2p_df, community = "fluid_communities", comm_args = list("no.of.communities" = 5) ) # Calculate centrality measures and leiden communities, return at node level network_p2p( data = p2p_df, centrality = "betweenness", community = "leiden", return = "data" ) %>% dplyr::glimpse()
Pass an igraph object to the function and obtain centrality statistics for each node in the object as a data frame. This function works as a wrapper of the centralization functions in 'igraph'.
network_summary(graph, hrvar = NULL, return = "table")
network_summary(graph, hrvar = NULL, return = "table")
graph |
'igraph' object that can be returned from |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
return |
String specifying what output to return. Valid inputs include:
See |
By default, a data frame containing centrality statistics. Available statistics include:
betweenness: number of shortest paths going through a node.
closeness: number of steps required to access every other node from a given node.
degree: number of connections linked to a node.
eigenvector: a measure of the influence a node has on a network.
pagerank: calculates the PageRank for the specified vertices. Please refer to the igraph package documentation for the detailed technical definition.
When "network"
is passed to "return"
, an 'igraph' object is returned with
additional node attributes containing centrality scores.
When "plot"
is passed to "return"
, a summary table is returned showing
the average centrality scores by HR attribute. This is currently available if
there is a valid HR attribute.
Other Network:
external_network_plot()
,
g2g_data
,
internal_network_plot()
,
network_describe()
,
network_g2g()
,
network_p2p()
,
p2p_data_sim()
# Simulate a p2p network p2p_data <- p2p_data_sim(size = 100) g <- network_p2p(data = p2p_data, return = "network") # Return summary table network_summary(graph = g, return = "table") # Return network with node centrality statistics network_summary(graph = g, return = "network") # Return summary plot network_summary(graph = g, return = "plot", hrvar = "Organization") # Simulate a g2g network and return table g2 <- g2g_data %>% network_g2g(return = "network") network_summary(graph = g2, return = "table")
# Simulate a p2p network p2p_data <- p2p_data_sim(size = 100) g <- network_p2p(data = p2p_data, return = "network") # Return summary table network_summary(graph = g, return = "table") # Return network with node centrality statistics network_summary(graph = g, return = "network") # Return summary plot network_summary(graph = g, return = "plot", hrvar = "Organization") # Simulate a g2g network and return table g2 <- g2g_data %>% network_g2g(return = "network") network_summary(graph = g2, return = "table")
Analyze Manager 1:1 Time distribution. Returns a stacked bar plot of different buckets of 1:1 time. Additional options available to return a table with distribution elements.
one2one_dist( data, hrvar = "Organization", mingroup = 5, dist_colours = c("#facebc", "#fcf0eb", "#b4d5dd", "#bfe5ee"), return = "plot", cut = c(5, 15, 30) )
one2one_dist( data, hrvar = "Organization", mingroup = 5, dist_colours = c("#facebc", "#fcf0eb", "#b4d5dd", "#bfe5ee"), return = "plot", cut = c(5, 15, 30) )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
dist_colours |
A character vector of length four to specify colour codes for the stacked bars. |
return |
String specifying what to return. This must be one of the following strings:
See |
cut |
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20) |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Managerial Relations:
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
# Return plot one2one_dist(sq_data, hrvar = "Organization", return = "plot") # Return summary table one2one_dist(sq_data, hrvar = "Organization", return = "table")
# Return plot one2one_dist(sq_data, hrvar = "Organization", return = "plot") # Return summary table one2one_dist(sq_data, hrvar = "Organization", return = "table")
Analyze weekly Manager 1:1 Time distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.
one2one_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
one2one_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A jittered scatter plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Managerial Relations:
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
# Return plot one2one_fizz(sq_data, hrvar = "Organization", return = "plot") # Return a summary table one2one_fizz(sq_data, hrvar = "Organization", return = "table")
# Return plot one2one_fizz(sq_data, hrvar = "Organization", return = "plot") # Return a summary table one2one_fizz(sq_data, hrvar = "Organization", return = "table")
This function calculates the average number of weeks (cadence) between of 1:1 meetings between an employee and their manager. Returns a distribution plot for typical cadence of 1:1 meetings. Additional options available to return a bar plot, tables, or a data frame with a cadence of 1 on 1 meetings metric.
one2one_freq( data, hrvar = "Organization", mingroup = 5, return = "plot", mode = "dist", sort_by = "Quarterly or less\n(>10 weeks)" )
one2one_freq( data, hrvar = "Organization", mingroup = 5, return = "plot", mode = "dist", sort_by = "Quarterly or less\n(>10 weeks)" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
|
mode |
String specifying what method to use. This must be one of the following strings:
|
sort_by |
String to specify the bucket label to sort by. Defaults to
|
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
For this view, there are four categories of cadence:
Weekly (once per week)
Twice monthly or more (up to 3 weeks)
Monthly (3 - 6 weeks)
Every two months (6 - 10 weeks)
Quarterly or less (> 10 weeks)
In the occasion there are zero 1:1 meetings with managers, this is included
into the last category, i.e. 'Quarterly or less'. Note that when mode
is
set to "sum"
, these rows are simply excluded from the calculation.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Managerial Relations:
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
# Return plot, mode dist one2one_freq(sq_data, hrvar = "Organization", return = "plot", mode = "dist") # Return plot, mode sum one2one_freq(sq_data, hrvar = "Organization", return = "plot", mode = "sum") # Return summary table one2one_freq(sq_data, hrvar = "Organization", return = "table")
# Return plot, mode dist one2one_freq(sq_data, hrvar = "Organization", return = "plot", mode = "dist") # Return plot, mode sum one2one_freq(sq_data, hrvar = "Organization", return = "plot", mode = "sum") # Return summary table one2one_freq(sq_data, hrvar = "Organization", return = "table")
Provides a week by week view of 1:1 time with managers, visualised as line charts. By default returns a line chart for 1:1 meeting hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.
one2one_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
one2one_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric Meeting_hours_with_manager_1_on_1
.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted line plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Managerial Relations:
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
# Return a line plot one2one_line(sq_data, hrvar = "LevelDesignation") # Return summary table one2one_line(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a line plot one2one_line(sq_data, hrvar = "LevelDesignation") # Return summary table one2one_line(sq_data, hrvar = "LevelDesignation", return = "table")
This function scans a standard query output for groups with high levels of 'Manager 1:1 Time'. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by manager 1:1 time.
one2one_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" )
one2one_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "plot" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
mode |
String to specify calculation mode. Must be either:
|
plot_mode |
Numeric vector to determine which plot mode to return. Must
be either
|
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric Meeting_hours_with_manager_1_on_1
.
See create_rank()
for applying the same analysis to a different metric.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bubble plot where the x-axis represents the
metric, the y-axis represents the HR attributes, and the size of the
bubbles represent the size of the organizations. Note that there is no
plot output if mode
is set to "combine"
.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Managerial Relations:
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_sum()
,
one2one_trend()
# Return rank table one2one_rank( data = sq_data, return = "table" ) # Return plot one2one_rank( data = sq_data, return = "plot" )
# Return rank table one2one_rank( data = sq_data, return = "table" ) # Return plot one2one_rank( data = sq_data, return = "plot" )
Provides an overview analysis of Manager 1:1 Time. Returns a bar plot showing average weekly minutes of Manager 1:1 Time by default. Additional options available to return a summary table.
one2one_sum(data, hrvar = "Organization", mingroup = 5, return = "plot") one2one_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")
one2one_sum(data, hrvar = "Organization", mingroup = 5, return = "plot") one2one_summary(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Managerial Relations:
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_trend()
# Return a ggplot bar chart one2one_sum(sq_data, hrvar = "LevelDesignation") # Return a summary table one2one_sum(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a ggplot bar chart one2one_sum(sq_data, hrvar = "LevelDesignation") # Return a summary table one2one_sum(sq_data, hrvar = "LevelDesignation", return = "table")
Provides a week by week view of scheduled manager 1:1 Time. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.
one2one_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
one2one_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
Character vector specifying what to return, defaults to
|
Uses the metric Meeting_hours_with_manager_1_on_1
.
Returns a 'ggplot' object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Managerial Relations:
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
Specify an outcome variable and return p-test outputs. All numeric variables in the dataset are used as predictor variables.
p_test(data, outcome, behavior, paired = FALSE)
p_test(data, outcome, behavior, paired = FALSE)
data |
A Person Query dataset in the form of a data frame. |
outcome |
A string specifying the name of a binary variable, i.e. can only contain the values 1 or 0. Used to group the two distributions. |
behavior |
A character vector specifying the column to be used as the behavior to test. |
paired |
Specify whether the dataset is paired or not. Defaults to
|
This function is a wrapper around wilcox.test()
from 'stats'.
Returns a numeric value representing the p-value outcome of the test.
Mark Powers [email protected]
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
# Simulate a binary variable X # Returns a single p-value library(dplyr) sq_data %>% mutate(X = ifelse(Email_hours > 6, 1, 0)) %>% p_test(outcome = "X", behavior = "External_network_size")
# Simulate a binary variable X # Returns a single p-value library(dplyr) sq_data %>% mutate(X = ifelse(Email_hours > 6, 1, 0)) %>% p_test(outcome = "X", behavior = "External_network_size")
Generate an person-to-person query / edgelist based on the graph
according to the Watts-Strogatz small-world network model. Organizational
data fields are also simulated for Organization
, LevelDesignation
, and
City
.
p2p_data_sim(dim = 1, size = 300, nei = 5, p = 0.05)
p2p_data_sim(dim = 1, size = 300, nei = 5, p = 0.05)
dim |
Integer constant, the dimension of the starting lattice. |
size |
Integer constant, the size of the lattice along each dimension. |
nei |
Integer constant, the neighborhood within which the vertices of the lattice will be connected. |
p |
Real constant between zero and one, the rewiring probability. |
This is a wrapper around igraph::watts.strogatz.game()
. See igraph
documentation for details on methodology. Loop edges and multiple edges are
disabled. Size of the network can be changing the arguments size
and nei
.
data frame with the same column structure as a person-to-person flexible
query. This has an edgelist structure and can be used directly as an input
to network_p2p()
.
Other Data:
dv_data
,
em_data
,
g2g_data
,
mt_data
,
sq_data
Other Network:
external_network_plot()
,
g2g_data
,
internal_network_plot()
,
network_describe()
,
network_g2g()
,
network_p2p()
,
network_summary()
# Simulate a p2p dataset with 800 edges p2p_data_sim(size = 200, nei = 4)
# Simulate a p2p dataset with 800 edges p2p_data_sim(size = 200, nei = 4)
Create the two-digit zero-padded format
pad2(x)
pad2(x)
x |
numeric value or vector with maximum two characters. |
Numeric value containing two-digit zero-padded values.
This is a 'data.table' implementation that mimics the output of
pairwise_count()
from 'widyr' to reduce package dependency. This is used
internally within tm_cooc()
.
pairwise_count(data, id = "line", word = "word")
pairwise_count(data, id = "line", word = "word")
data |
Data frame output from |
id |
String to represent the id variable. Defaults to |
word |
String to represent the word variable. Defaults to |
data frame with the following columns representing a pairwise count:
"item1"
"item2"
"n"
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
Other Text-mining:
meeting_tm_report()
,
subject_validate()
,
subject_validate_report()
,
tm_clean()
,
tm_cooc()
,
tm_freq()
,
tm_wordcloud()
td <- data.frame(line = c(1, 1, 2, 2), word = c("work", "meeting", "catch", "up")) pairwise_count(td, id = "line", word = "word")
td <- data.frame(line = c(1, 1, 2, 2), word = c("work", "meeting", "catch", "up")) pairwise_count(td, id = "line", word = "word")
This function also presents the p-value for the null hypothesis that the variable has not changed, using a Wilcox signed-rank test.
period_change( data, compvar, before_start = min(as.Date(data$Date, "%m/%d/%Y")), before_end, after_start = as.Date(before_end) + 1, after_end = max(as.Date(data$Date, "%m/%d/%Y")), return = "count" )
period_change( data, compvar, before_start = min(as.Date(data$Date, "%m/%d/%Y")), before_end, after_start = as.Date(before_end) + 1, after_end = max(as.Date(data$Date, "%m/%d/%Y")), return = "count" )
data |
Person Query as a dataframe including date column named |
compvar |
comparison variable to compare person change before and
after For example, |
before_start |
Start date of "before" time period in |
before_end |
End date of "before" time period in |
after_start |
Start date of "after" time period in |
after_end |
End date of "after" time period in |
return |
Character vector specifying whether to return plot as Count or Percentage of Employees. Valid inputs include:
|
ggplot object showing a bar plot (histogram) of change for two time intervals.
Mark Powers [email protected]
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Time-series:
IV_by_period()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_trend()
Other Flexible:
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_density()
,
create_dist()
,
create_fizz()
,
create_hist()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
Other Flexible Input:
create_ITSA()
# Run plot period_change(sq_data, compvar = "Workweek_span", before_end = "2019-12-29") # Run plot with more specific arguments period_change(sq_data, compvar = "Workweek_span", before_start = "2019-12-15", before_end = "2019-12-29", after_start = "2020-01-05", after_end = "2020-01-26", return = "percentage")
# Run plot period_change(sq_data, compvar = "Workweek_span", before_end = "2019-12-29") # Run plot with more specific arguments period_change(sq_data, compvar = "Workweek_span", before_start = "2019-12-15", before_end = "2019-12-29", after_start = "2020-01-05", after_end = "2020-01-26", return = "percentage")
Apply hierarchical clustering to selected metrics. Person averages are computed prior to clustering. The hierarchical clustering uses cosine distance and the ward.D method of agglomeration.
personas_hclust(data, metrics, k = 4, return = "plot")
personas_hclust(data, metrics, k = 4, return = "plot")
data |
A data frame containing |
metrics |
Character vector containing names of metrics to use for clustering. See examples section. |
k |
Numeric vector to specify the |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A heatmap plot comparing the key metric averages
of the clusters as per keymetrics_scan()
.
"data"
: data frame. Raw data with clusters appended
"table"
: data frame. Summary table for identified clusters
"hclust"
: 'hclust' object. hierarchical model generated by the function.
Ainize Cidoncha [email protected]
Other Clustering:
workpatterns_classify()
,
workpatterns_hclust()
# Return plot personas_hclust(sq_data, metrics = c("Collaboration_hours", "Workweek_span"), k = 4) # Return summary table personas_hclust(sq_data, metrics = c("Collaboration_hours", "Workweek_span"), k = 4, return = "table") # Return data with clusters appended personas_hclust(sq_data, metrics = c("Collaboration_hours", "Workweek_span"), k = 4, return = "data")
# Return plot personas_hclust(sq_data, metrics = c("Collaboration_hours", "Workweek_span"), k = 4) # Return summary table personas_hclust(sq_data, metrics = c("Collaboration_hours", "Workweek_span"), k = 4, return = "table") # Return data with clusters appended personas_hclust(sq_data, metrics = c("Collaboration_hours", "Workweek_span"), k = 4, return = "data")
This is a helper function for plotting visualizations for the
Flexibility Index using the data
output from flex_index()
. This is used
within flex_index()
itself as an internal function.
plot_flex_index( data, sig_label = "Signals_sent_", method = "sample", start_hour = 9, end_hour = 17, mode = "binary" )
plot_flex_index( data, sig_label = "Signals_sent_", method = "sample", start_hour = 9, end_hour = 17, mode = "binary" )
data |
Data frame. Direct data output from |
sig_label |
Character string for identifying signal labels. |
method |
Character string for determining which plot to return. Options include "sample", "common", and "time". "sample" plots a sample of ten working patterns; "common" plots the ten most common working patterns; "time" plots the Flexibility Index for the group over time. |
start_hour |
See |
end_hour |
See |
mode |
See |
ggplot object. See method
.
Other Working Patterns:
flex_index()
,
identify_shifts()
,
identify_shifts_wp()
,
workpatterns_area()
,
workpatterns_classify()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()
# Pre-calculate Flexibility Index fi_output <- flex_index(em_data, return = "data") # Examples of how to test the plotting options individually # Sample of 10 work patterns plot_flex_index(fi_output, method = "sample") # 10 most common work patterns plot_flex_index(fi_output, method = "common") # Plot Flexibility Index over time plot_flex_index(fi_output, method = "time")
# Pre-calculate Flexibility Index fi_output <- flex_index(em_data, return = "data") # Examples of how to test the plotting options individually # Sample of 10 work patterns plot_flex_index(fi_output, method = "sample") # 10 most common work patterns plot_flex_index(fi_output, method = "common") # Plot Flexibility Index over time plot_flex_index(fi_output, method = "time")
This is used within plot_flex_index()
and workpatterns_rank()
.
plot_hourly_pat( data, start_hour, end_hour, legend, legend_label, legend_text = "Observed activity", rows, title, subtitle, caption, ylab = paste("Top", rows, "activity patterns") )
plot_hourly_pat( data, start_hour, end_hour, legend, legend_label, legend_text = "Observed activity", rows, title, subtitle, caption, ylab = paste("Top", rows, "activity patterns") )
data |
Data frame containing three columns:
|
start_hour |
Numeric value to specify expected start hour. |
end_hour |
Numeric value to specify expected end hour. |
legend |
Data frame containing the columns:
|
legend_label |
String specifying column to display in the grey label box |
legend_text |
String to be used in the bottom legend label. |
rows |
Number of rows to show in plot. |
title |
String to specify plot title. |
subtitle |
String to specify plot subtitle. |
caption |
String to specify plot caption. |
ylab |
String to specify plot y-axis label. |
Internal function within create_IV()
that plots WOE graphs using an IV
object. Can also be used for plotting individual WOE graphs.
plot_WOE(IV, predictor)
plot_WOE(IV, predictor)
IV |
IV object created with 'Information'. |
predictor |
String with the name of the predictor variable. |
'ggplot' object. Bar plot with 'WOE' as the y-axis and bins of the predictor variable as the horizontal axis.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
Other Variable Association:
IV_by_period()
,
IV_report()
,
create_IV()
Other Information Value:
IV_by_period()
,
IV_report()
,
create_IV()
Read in a preamble to be used within each individual reporting function. Reads from the Markdown file installed with the package.
read_preamble(path)
read_preamble(path)
path |
Text string containing the path for the appropriate Markdown file. |
String containing the text read in from the specified Markdown file.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
Other Reports:
IV_report()
,
capacity_report()
,
coaching_report()
,
collaboration_report()
,
connectivity_report()
,
generate_report()
,
meeting_tm_report()
,
subject_validate_report()
,
validation_report()
,
workpatterns_report()
This function takes in a selected metric and uses z-score (number of standard deviations) to identify and remove outlier weeks for individuals across time. There are applications in this for removing weeks with abnormally low collaboration activity, e.g. holidays. Retains metrics with z > -2.
Function is based on identify_outlier()
, but implements a more elaborate
approach as the outliers are identified and removed with respect to each
individual, as opposed to the group. Note that remove_outliers()
has a
longer runtime compared to identify_outlier()
.
remove_outliers(data, metric = "Collaboration_hours")
remove_outliers(data, metric = "Collaboration_hours")
data |
A Standard Person Query dataset in the form of a data frame. |
metric |
Character string containing the name of the metric, e.g. "Collaboration_hours" |
For mature functions to remove common outliers, please see the following:
identify_holidayweeks()
identify_nkw()
identify_inactiveweeks
Returns a new data frame, "cleaned_data" with all metrics, having removed the person-weeks that are below 2 standard deviations of each individual's collaboration activity.
Mark Powers [email protected]
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
Convert rgb to HEX code
rgb2hex(r, g, b)
rgb2hex(r, g, b)
r , g , b
|
Values that correspond to the three RGB parameters |
Returns a string containing a HEX code.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
A dataset generated from a Standard Person Query from Workplace Analytics.
sq_data
sq_data
A data frame with 4403 rows and 66 variables:
Time between the person's first sent email or meeting attended and the last email or meeting for each day of the work week.
Number of hours the person spent sending and receiving emails.
...
data frame.
Other Data:
dv_data
,
em_data
,
g2g_data
,
mt_data
,
p2p_data_sim()
This function standardises the variable names to a Standard Person Query, where the standard use case is to pass a Ways of Working Assessment Query to the function.
standardise_pq(data) standardize_pq(data)
standardise_pq(data) standardize_pq(data)
data |
A Ways of Working Assessment query to pass through as a data frame. |
The following standardisation steps are taken:
Collaboration_hrs
-> Collaboration_hours
Instant_message_hours
-> Instant_Message_hours
data frame containing the formatted query passed to the function.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
Other Import and Export:
copy_df()
,
create_dt()
,
export()
,
import_to_fst()
,
import_wpa()
Take a meeting query with subject lines and create a new TRUE/FALSE column which classifies meetings by a provided set of patterns in the subject lines.
subject_classify( data, var_name = "class", keywords = NULL, pattern = NULL, ignore_case = FALSE, return = "data" )
subject_classify( data, var_name = "class", keywords = NULL, pattern = NULL, ignore_case = FALSE, return = "data" )
data |
A Meeting Query dataset in the form of a data frame. |
var_name |
String containing the name of the new column to be created. |
keywords |
Character vector containing the keywords to match. |
pattern |
String to use for regular expression matching instead of
|
ignore_case |
Logical value to determine whether to ignore case when performing pattern matching. |
return |
String specifying what output to return. |
class_df <- mt_data %>% subject_classify( var_name = "IsSales", keywords = c("sales", "marketing") ) class_df %>% dplyr::count(IsSales) # Return a table directly mt_data %>% subject_classify(pattern = "annual", return = "table")
class_df <- mt_data %>% subject_classify( var_name = "IsSales", keywords = c("sales", "marketing") ) class_df %>% dplyr::count(IsSales) # Return a table directly mt_data %>% subject_classify(pattern = "annual", return = "table")
This function generates a matrix of the top occurring words in meetings, grouped by a specified attribute such as organisational attribute, day of the week, or hours of the day.
subject_scan( data, hrvar, mode = NULL, top_n = 10, token = "words", return = "plot", weight = NULL, stopwords = NULL, ... ) tm_scan( data, hrvar, mode = NULL, top_n = 10, token = "words", return = "plot", weight = NULL, stopwords = NULL, ... )
subject_scan( data, hrvar, mode = NULL, top_n = 10, token = "words", return = "plot", weight = NULL, stopwords = NULL, ... ) tm_scan( data, hrvar, mode = NULL, top_n = 10, token = "words", return = "plot", weight = NULL, stopwords = NULL, ... )
data |
A Meeting Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Note that the prefix |
mode |
String specifying what variable to use for grouping subject words. Valid values include:
|
top_n |
Numeric value specifying the top number of words to show. |
token |
A character vector accepting either |
return |
String specifying what to return. This must be one of the following strings:
See |
weight |
String specifying the column name of a numeric variable for
weighting data, such as |
stopwords |
A character vector OR a single-column data frame labelled
|
... |
Additional parameters to pass to |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A heatmapped grid.
"table"
: data frame. A summary table for the metric.
"data"
: data frame.
# return a heatmap table for words mt_data %>% subject_scan(hrvar = "Organizer_Organization") # return a heatmap table for ngrams mt_data %>% subject_scan( hrvar = "Organizer_Organization", token = "ngrams", n = 2) # return raw table format mt_data %>% subject_scan(hrvar = "Organizer_Organization", return = "table") # grouped by hours mt_data %>% subject_scan(mode = "hours") # grouped by days mt_data %>% subject_scan(mode = "days")
# return a heatmap table for words mt_data %>% subject_scan(hrvar = "Organizer_Organization") # return a heatmap table for ngrams mt_data %>% subject_scan( hrvar = "Organizer_Organization", token = "ngrams", n = 2) # return raw table format mt_data %>% subject_scan(hrvar = "Organizer_Organization", return = "table") # grouped by hours mt_data %>% subject_scan(mode = "hours") # grouped by days mt_data %>% subject_scan(mode = "days")
This functions scans a meeting query and highlights meetings with subjects that include common exlusion terms. It is intended to be used by an analyst to validate raw data before conducting additional analysis. Returns a summary in the console by default. Additional option to return the underlying data with a flag of items for review.
subject_validate(data, return = "text")
subject_validate(data, return = "text")
data |
A meeting query in the form of a data frame. |
return |
A string specifying what to return. Returns a message in the
console by default, where |
Returns a message in the console by default, where 'text'
is passed
in return
. When 'table'
is passed, a summary table with common terms
found is printed. When 'data'
is passed, a the original data with an
additional flag column is returned as a data frame.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate_report()
,
track_HR_change()
,
validation_report()
Other Text-mining:
meeting_tm_report()
,
pairwise_count()
,
subject_validate_report()
,
tm_clean()
,
tm_cooc()
,
tm_freq()
,
tm_wordcloud()
This functions creates a text mining report in HTML based on Meeting Subject Lines for data validation. It scans a meeting query and highlights meetings with subjects that include common exlusion terms. It is intended to be used by an analyst to validate raw data before conducting additional analysis. Returns a HTML report by default.
subject_validate_report( data, path = "Subject Lines Validation Report", timestamp = TRUE, keep = 100, seed = 100 )
subject_validate_report( data, path = "Subject Lines Validation Report", timestamp = TRUE, keep = 100, seed = 100 )
data |
A Meeting Query dataset in the form of a data frame. |
path |
Pass the file path and the desired file name, excluding the file
extension. For example, |
timestamp |
Logical vector specifying whether to include a timestamp in
the file name. Defaults to |
keep |
A numeric vector specifying maximum number of words to keep. |
seed |
A numeric vector to set seed for random generation. |
An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
track_HR_change()
,
validation_report()
Other Text-mining:
meeting_tm_report()
,
pairwise_count()
,
subject_validate()
,
tm_clean()
,
tm_cooc()
,
tm_freq()
,
tm_wordcloud()
Other Reports:
IV_report()
,
capacity_report()
,
coaching_report()
,
collaboration_report()
,
connectivity_report()
,
generate_report()
,
meeting_tm_report()
,
read_preamble()
,
validation_report()
,
workpatterns_report()
A theme function applied to 'ggplot' visualisations in 'wpa'. Install and load 'extrafont' to use custom fonts for plotting.
theme_wpa(font_size = 12, font_family = "Segoe UI")
theme_wpa(font_size = 12, font_family = "Segoe UI")
font_size |
Numeric value that prescribes the base font size for the plot. The text elements are defined relatively to this base font size. Defaults to 12. |
font_family |
Character value specifying the font family
to be used in the plot. The default value is |
Returns a ggplot object with the applied theme.
Other Themes:
theme_wpa_basic()
A theme function applied to 'ggplot' visualisations in 'wpa'.
Based on theme_wpa()
but has no font requirements.
theme_wpa_basic(font_size = 12)
theme_wpa_basic(font_size = 12)
font_size |
Numeric value that prescribes the base font size for the plot. The text elements are defined relatively to this base font size. Defaults to 12. |
Returns a ggplot object with the applied theme.
Other Themes:
theme_wpa()
This function processes the Subject
column in a Meeting Query by applying
tokenisation usingtidytext::unnest_tokens()
, and removing any stopwords
supplied in a data frame (using the argument stopwords
). This is a
sub-function that feeds into tm_freq()
, tm_cooc()
, and tm_wordcloud()
.
The default is to return a data frame with tokenised counts of words or
ngrams.
tm_clean(data, token = "words", stopwords = NULL, ...)
tm_clean(data, token = "words", stopwords = NULL, ...)
data |
A Meeting Query dataset in the form of a data frame. |
token |
A character vector accepting either |
stopwords |
A character vector OR a single-column data frame labelled
|
... |
Additional parameters to pass to |
data frame with two columns:
line
word
Other Text-mining:
meeting_tm_report()
,
pairwise_count()
,
subject_validate()
,
subject_validate_report()
,
tm_cooc()
,
tm_freq()
,
tm_wordcloud()
# words tm_clean(mt_data) # ngrams tm_clean(mt_data, token = "ngrams")
# words tm_clean(mt_data) # ngrams tm_clean(mt_data, token = "ngrams")
This function generates a word co-occurrence network plot, with options to
return a table. This function is used within meeting_tm_report()
.
tm_cooc(data, stopwords = NULL, seed = 100, return = "plot", lmult = 0.05)
tm_cooc(data, stopwords = NULL, seed = 100, return = "plot", lmult = 0.05)
data |
A Meeting Query dataset in the form of a data frame. |
stopwords |
A character vector OR a single-column data frame labelled
|
seed |
A numeric vector to set seed for random generation. |
return |
String specifying what to return. This must be one of the following strings:
See |
lmult |
A multiplier to adjust the line width in the output plot. Defaults to 0.05. |
This function uses tm_clean()
as the underlying data wrangling function.
There is an option to remove stopwords by passing a data frame into the
stopwords
argument.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' and 'ggraph' object. A network plot.
"table"
: data frame. A summary table.
Carlos Morales [email protected]
Other Text-mining:
meeting_tm_report()
,
pairwise_count()
,
subject_validate()
,
subject_validate_report()
,
tm_clean()
,
tm_freq()
,
tm_wordcloud()
# Demo using a subset of `mt_data` mt_data %>% dplyr::slice(1:20) %>% tm_cooc(lmult = 0.01)
# Demo using a subset of `mt_data` mt_data %>% dplyr::slice(1:20) %>% tm_cooc(lmult = 0.01)
Generate a circular bar plot with frequency of words / ngrams.
This function is used within meeting_tm_report()
.
tm_freq(data, token = "words", stopwords = NULL, keep = 100, return = "plot")
tm_freq(data, token = "words", stopwords = NULL, keep = 100, return = "plot")
data |
A Meeting Query dataset in the form of a data frame. |
token |
A character vector accepting either |
stopwords |
A character vector OR a single-column data frame labelled
|
keep |
A numeric vector specifying maximum number of words to keep. |
return |
String specifying what to return. This must be one of the following strings:
See |
This function uses tm_clean()
as the underlying data wrangling function.
There is an option to remove stopwords by passing a data frame into the
stopwords
argument.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A circular bar plot.
"table"
: data frame. A summary table.
Other Text-mining:
meeting_tm_report()
,
pairwise_count()
,
subject_validate()
,
subject_validate_report()
,
tm_clean()
,
tm_cooc()
,
tm_wordcloud()
tm_freq(mt_data, token = "words") tm_freq(mt_data, token = "ngrams")
tm_freq(mt_data, token = "words") tm_freq(mt_data, token = "ngrams")
Generate a wordcloud with the meeting query.
This is a sub-function that feeds into meeting_tm_report()
.
tm_wordcloud( data, stopwords = NULL, seed = 100, keep = 100, return = "plot", ... )
tm_wordcloud( data, stopwords = NULL, seed = 100, keep = 100, return = "plot", ... )
data |
A Meeting Query dataset in the form of a data frame. |
stopwords |
A character vector OR a single-column data frame labelled
|
seed |
A numeric vector to set seed for random generation. |
keep |
A numeric vector specifying maximum number of words to keep. |
return |
String specifying what to return. This must be one of the following strings:
See |
... |
Additional parameters to be passed to
|
Uses the 'ggwordcloud' package for the underlying implementation, thus
returning a 'ggplot' object. Additional layers can be added onto the plot
using a ggplot +
syntax.
The recommendation is not to return over 100 words in a word cloud.
This function uses tm_clean()
as the underlying data wrangling function.
There is an option to remove stopwords by passing a data frame into the
stopwords
argument.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object containing a word cloud.
"table"
: data frame returning the data used to generate the word cloud.
Other Text-mining:
meeting_tm_report()
,
pairwise_count()
,
subject_validate()
,
subject_validate_report()
,
tm_clean()
,
tm_cooc()
,
tm_freq()
tm_wordcloud(mt_data, keep = 30) # Removing stopwords tm_wordcloud(mt_data, keep = 30, stopwords = c("weekly", "update"))
tm_wordcloud(mt_data, keep = 30) # Removing stopwords tm_wordcloud(mt_data, keep = 30, stopwords = c("weekly", "update"))
Row-bind an identical data frame and impute a specific
column with the target_value
, which defaults as "Total". The purpose of
this is to enable to creation of summary tables with a calculated "Total"
row. See example below on usage.
totals_bind(data, target_col, target_value = "Total")
totals_bind(data, target_col, target_value = "Total")
data |
data frame |
target_col |
Character value of the column in which to impute |
target_value |
Character value to impute in the new data frame to
row-bind. Defaults to |
data frame with twice the number of rows of the input data frame, where half
of those rows will have the target_col
column imputed with the value from
target_value
.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
sq_data %>% totals_bind(target_col = "LevelDesignation", target_value = "Total") %>% collab_sum(hrvar = "LevelDesignation", return = "table")
sq_data %>% totals_bind(target_col = "LevelDesignation", target_value = "Total") %>% collab_sum(hrvar = "LevelDesignation", return = "table")
Create a 'Total' column of character type comprising exactly of
one unique value. This is a convenience function for returning a no-HR
attribute view when NULL
is supplied to the hrvar
argument in
functions.
totals_col(data, total_value = "Total")
totals_col(data, total_value = "Total")
data |
data frame |
total_value |
Character value defining the name and the value of the
|
data frame containing an additional 'Total' column on top of the input data frame.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_reorder()
,
tstamp()
,
us_to_space()
,
wrap()
# Create a visual without HR attribute breaks sq_data %>% totals_col() %>% collab_fizz(hrvar = "Total")
# Create a visual without HR attribute breaks sq_data %>% totals_col() %>% collab_fizz(hrvar = "Total")
For a given data frame, reorder a row to the first row of that
data frame through matching a value of a variable. The intended usage
of this function is to be used for reordering the "Total" row, and not
with "flat" data. This can be used in conjunction with totals_bind()
,
which is used to create a "Total" row in the data.
totals_reorder(data, target_col, target_value = "Total")
totals_reorder(data, target_col, target_value = "Total")
data |
Summary table in the form of a data frame. |
target_col |
Character value of the column in which to reorder |
target_value |
Character value of the value in |
data frame with the 'Total' row reordered to the bottom.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
tstamp()
,
us_to_space()
,
wrap()
sq_data %>% totals_bind(target_col = "LevelDesignation", target_value = "Total") %>% collab_sum(hrvar = "LevelDesignation", return = "table") %>% totals_reorder(target_col = "group", target_value = "Total")
sq_data %>% totals_bind(target_col = "LevelDesignation", target_value = "Total") %>% collab_sum(hrvar = "LevelDesignation", return = "table") %>% totals_reorder(target_col = "group", target_value = "Total")
Creates a list of everyone at a specified start date and a specified end date then aggregates up people who have moved between organizations between this to points of time and visualizes the move through a sankey chart.
Through this chart you can see:
The HR attribute/orgs that have the highest move out
The HR attribute/orgs that have the highest move in
The number of people that do not have that HR attribute or if they are no longer in the system
track_HR_change( data, start_date = min(data$Date), end_date = max(data$Date), hrvar = "Organization", mingroup = 5, return = "plot", NA_replacement = "Out of Company" )
track_HR_change( data, start_date = min(data$Date), end_date = max(data$Date), hrvar = "Organization", mingroup = 5, return = "plot", NA_replacement = "Out of Company" )
data |
A Person Query dataset in the form of a data frame. |
start_date |
A start date to compare changes. See |
end_date |
An end date to compare changes. See |
hrvar |
HR Variable by which to compare changes between, defaults to
|
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
Character vector specifying what to return, defaults to
|
NA_replacement |
Character replacement for NA defaults to "out of company" |
Returns a 'NetworkD3' object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
Tannaz Sattari Tabrizi [email protected]
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
validation_report()
dv_data %>% track_HR_change()
dv_data %>% track_HR_change()
This function generates a time stamp of the format 'yymmdd_hhmmss'
.
This is a support function and is not intended for direct use.
tstamp()
tstamp()
String containing the timestamp in the format 'yymmdd_hhmmss'
.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
us_to_space()
,
wrap()
Convenience function to convert underscores to space
us_to_space(x)
us_to_space(x)
x |
String to replace all occurrences of |
Character vector containing the modified string.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
wrap()
us_to_space("Meeting_hours_with_manager_1_on_1")
us_to_space("Meeting_hours_with_manager_1_on_1")
The function generates an interactive HTML report using Standard Person Query data as an input. The report contains checks on Workplace Analytics query outputs to provide diagnostic information for the Analyst prior to analysis.
An additional Standard Meeting Query can be provided to perform meeting subject line related checks. This is optional and the validation report can be run without it.
validation_report( data, meeting_data = NULL, hrvar = "Organization", path = "validation report", hrvar_threshold = 150, timestamp = TRUE )
validation_report( data, meeting_data = NULL, hrvar = "Organization", path = "validation report", hrvar_threshold = 150, timestamp = TRUE )
data |
A Standard Person Query dataset in the form of a data frame. |
meeting_data |
An optional Meeting Query dataset in the form of a data frame. |
hrvar |
HR Variable by which to split metrics, defaults to "Organization" but accepts any character vector, e.g. "Organization" |
path |
Pass the file path and the desired file name, excluding the file extension. |
hrvar_threshold |
Numeric value determining the maximum number of unique
values to be allowed to qualify as a HR variable. This is passed directly
to the |
timestamp |
Logical vector specifying whether to include a timestamp in
the file name. Defaults to |
For your input to data
or meeting_data
, please use the function
wpa::import_wpa()
to import your csv query files into R. This function will
standardize format and prepare the data as input for this report.
If you are passing a Ways of Working Assessment query instead of a Standard
Person query to the data
argument, please also use standardise_pq()
to
make the variable names consistent with a Standard Person Query.
Since v1.6.2
, the variable Call_hours
is no longer a pre-requisite to run
this report. A note is returned in-line instead of an error if the variable
is not available.
An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.
validation_report()
check_query()
flag_ch_ratio()
hrvar_count_all()
identify_privacythreshold()
identify_nkw()
identify_holidayweeks()
subject_validate()
identify_tenure()
flag_outlooktime()
identify_shifts()
track_HR_change()
You can browse each individual function for details on calculations.
Below is an example on how to run the report.
validation_report(dv_data, meeting_data = mt_data, hrvar = "Organization")
Other Reports:
IV_report()
,
capacity_report()
,
coaching_report()
,
collaboration_report()
,
connectivity_report()
,
generate_report()
,
meeting_tm_report()
,
read_preamble()
,
subject_validate_report()
,
workpatterns_report()
Other Data Validation:
check_query()
,
extract_hr()
,
flag_ch_ratio()
,
flag_em_ratio()
,
flag_extreme()
,
flag_outlooktime()
,
hr_trend()
,
hrvar_count()
,
hrvar_count_all()
,
hrvar_trend()
,
identify_churn()
,
identify_holidayweeks()
,
identify_inactiveweeks()
,
identify_nkw()
,
identify_outlier()
,
identify_privacythreshold()
,
identify_query()
,
identify_shifts()
,
identify_shifts_wp()
,
identify_tenure()
,
remove_outliers()
,
standardise_pq()
,
subject_validate()
,
subject_validate_report()
,
track_HR_change()
Generate a static HTML report on wellbeing, taking a custom Wellbeing Query
and an Hourly Collaboration query as inputs. See Required metrics
section
for more details on the required inputs for the Wellbeing Query. Note that
this function is currently still in experimental/development stage and may
experience changes in the near term.
wellbeing_report( wbq, hcq, hrvar = "Organization", mingroup = 5, start_hour = "0900", end_hour = "1700", path = "wellbeing_report" )
wellbeing_report( wbq, hcq, hrvar = "Organization", mingroup = 5, start_hour = "0900", end_hour = "1700", path = "wellbeing_report" )
wbq |
Data frame. A custom Wellbeing Query dataset based on the Person Query. If certain metrics are missing from the Wellbeing / Person Query, the relevant visual will show up with an indicative message. |
hcq |
Data frame. An Hourly Collaboration Query dataset. |
hrvar |
String specifying HR attribute to cut by archetypes. Defaults to
|
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
start_hour |
A character vector specifying starting hours, e.g.
|
end_hour |
A character vector specifying starting hours, e.g. |
path |
Pass the file path and the desired file name, excluding the file
extension. Defaults to |
A full list of the required metrics are as follows:
Urgent_meeting_hours
IMs_sent_other_level
IMs_sent_same_level
Emails_sent_other_level
Emails_sent_same_level
Emails_sent
IMs_sent
Meeting_hours_intimate_group
Meeting_hours_1on1
Urgent_email_hours
Unscheduled_call_hours
Meeting_hours
Instant_Message_hours
Email_hours
Total_focus_hours
Weekend_IMs_sent
Weekend_emails_sent
After_hours_collaboration_hours
After_hours_meeting_hours
After_hours_instant_messages
After_hours_in_unscheduled_calls
After_hours_email_hours
Collaboration_hours
Workweek_span
Analyze Work Week Span distribution. Returns a stacked bar plot by default. Additional options available to return a table with distribution elements.
workloads_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(15, 30, 45) )
workloads_dist( data, hrvar = "Organization", mingroup = 5, return = "plot", cut = c(15, 30, 45) )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
cut |
A numeric vector of length three to specify the breaks for the distribution, e.g. c(10, 15, 20) |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A stacked bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Workweek Span:
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
# Return plot workloads_dist(sq_data, hrvar = "Organization", return = "plot") # Return a summary table workloads_dist(sq_data, hrvar = "Organization", return = "table")
# Return plot workloads_dist(sq_data, hrvar = "Organization", return = "plot") # Return a summary table workloads_dist(sq_data, hrvar = "Organization", return = "table")
Analyze Work Week Span distribution, and returns a 'fizzy' scatter plot by default. Additional options available to return a table with distribution elements.
workloads_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
workloads_fizz(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A jittered scatter plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Workweek Span:
workloads_dist()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
# Return plot workloads_fizz(sq_data, hrvar = "Organization", return = "plot") # Return summary table workloads_fizz(sq_data, hrvar = "Organization", return = "table")
# Return plot workloads_fizz(sq_data, hrvar = "Organization", return = "plot") # Return summary table workloads_fizz(sq_data, hrvar = "Organization", return = "table")
Provides a week by week view of 'Work Week Span', visualised as line charts. By default returns a line chart for collaboration hours, with a separate panel per value in the HR attribute. Additional options available to return a summary table.
workloads_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
workloads_line(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A faceted line plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Workweek Span:
workloads_dist()
,
workloads_fizz()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
# Return a line plot workloads_line(sq_data, hrvar = "LevelDesignation") # Return summary table workloads_line(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a line plot workloads_line(sq_data, hrvar = "LevelDesignation") # Return summary table workloads_line(sq_data, hrvar = "LevelDesignation", return = "table")
This function scans a standard query output for groups with high levels of Work Week Span. Returns a plot by default, with an option to return a table with a all of groups (across multiple HR attributes) ranked by work week span.
workloads_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "table" )
workloads_rank( data, hrvar = extract_hr(data), mingroup = 5, mode = "simple", plot_mode = 1, return = "table" )
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
mode |
String to specify calculation mode. Must be either:
|
plot_mode |
Numeric vector to determine which plot mode to return. Must
be either
|
return |
String specifying what to return. This must be one of the following strings:
See |
Uses the metric Workweek_span
.
See create_rank()
for applying the same analysis to a different metric.
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bubble plot where the x-axis represents the
metric, the y-axis represents the HR attributes, and the size of the
bubbles represent the size of the organizations. Note that there is no
plot output if mode
is set to "combine"
.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Workweek Span:
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_summary()
,
workloads_trend()
# Return rank table workloads_rank( data = sq_data, return = "table" ) # Return plot workloads_rank( data = sq_data, return = "plot" )
# Return rank table workloads_rank( data = sq_data, return = "table" ) # Return plot workloads_rank( data = sq_data, return = "plot" )
Provides an overview analysis of 'Work Week Span'. Returns a bar plot showing average weekly utilization hours by default. Additional options available to return a summary table.
workloads_summary(data, hrvar = "Organization", mingroup = 5, return = "plot") workloads_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
workloads_summary(data, hrvar = "Organization", mingroup = 5, return = "plot") workloads_sum(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: 'ggplot' object. A bar plot for the metric.
"table"
: data frame. A summary table for the metric.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_trend()
,
workpatterns_area()
,
workpatterns_rank()
Other Workweek Span:
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_trend()
# Return a ggplot bar chart workloads_summary(sq_data, hrvar = "LevelDesignation") # Return a summary table workloads_summary(sq_data, hrvar = "LevelDesignation", return = "table")
# Return a ggplot bar chart workloads_summary(sq_data, hrvar = "LevelDesignation") # Return a summary table workloads_summary(sq_data, hrvar = "LevelDesignation", return = "table")
Provides a week by week view of Work Week Span. By default returns a week by week heatmap, highlighting the points in time with most activity. Additional options available to return a summary table.
workloads_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
workloads_trend(data, hrvar = "Organization", mingroup = 5, return = "plot")
data |
A Standard Person Query dataset in the form of a data frame. |
hrvar |
String containing the name of the HR Variable by which to split
metrics. Defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
return |
Character vector specifying what to return, defaults to
|
Uses the metric Workweek_span
.
Returns a 'ggplot' object by default, where 'plot' is passed in return
.
When 'table' is passed, a summary table is returned as a data frame.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workpatterns_area()
,
workpatterns_rank()
Other Workweek Span:
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
# Run plot workloads_trend(sq_data) # Run table workloads_trend(sq_data, hrvar = "LevelDesignation", return = "table")
# Run plot workloads_trend(sq_data) # Run table workloads_trend(sq_data, hrvar = "LevelDesignation", return = "table")
Uses the Hourly Collaboration query to produce an area plot of Emails sent and IMs sent attended by hour of the day.
workpatterns_area( data, hrvar = "Organization", mingroup = 5, signals = c("email", "IM"), return = "plot", values = "percent", start_hour = "0900", end_hour = "1700" )
workpatterns_area( data, hrvar = "Organization", mingroup = 5, signals = c("email", "IM"), return = "plot", values = "percent", start_hour = "0900", end_hour = "1700" )
data |
A data frame containing data from the Hourly Collaboration query. |
hrvar |
HR Variable by which to split metrics. Accepts a character
vector, defaults to |
mingroup |
Numeric value setting the privacy threshold / minimum group size, defaults to 5. |
signals |
Character vector to specify which collaboration metrics to use:
|
return |
String specifying what to return. This must be one of the following strings:
See |
values |
Character vector to specify whether to return percentages or absolute values in "data" and "plot". Valid values are:
|
start_hour |
A character vector specifying starting hours, e.g. "0900" |
end_hour |
A character vector specifying starting hours, e.g. "1700" |
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. An overlapping area plot (default).
"table"
: data frame. A summary table.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_rank()
Other Working Patterns:
flex_index()
,
identify_shifts()
,
identify_shifts_wp()
,
plot_flex_index()
,
workpatterns_classify()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()
Other Working Patterns:
flex_index()
,
identify_shifts()
,
identify_shifts_wp()
,
plot_flex_index()
,
workpatterns_classify()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()
# Create a sample small dataset orgs <- c("Customer Service", "Financial Planning", "Biz Dev") em_data <- em_data[em_data$Organization %in% orgs, ] # Return visualization of percentage distribution workpatterns_area(em_data, return = "plot", values = "percent") # Return visualization of absolute values workpatterns_area(em_data, return = "plot", values = "abs") # Return summary table workpatterns_area(em_data, return = "table")
# Create a sample small dataset orgs <- c("Customer Service", "Financial Planning", "Biz Dev") em_data <- em_data[em_data$Organization %in% orgs, ] # Return visualization of percentage distribution workpatterns_area(em_data, return = "plot", values = "percent") # Return visualization of absolute values workpatterns_area(em_data, return = "plot", values = "abs") # Return summary table workpatterns_area(em_data, return = "table")
Apply a rule based algorithm to emails or instant messages sent by hour of day. Uses a binary week-based ('bw') method by default, with options to use the the person-average volume-based ('pav') method.
workpatterns_classify( data, hrvar = "Organization", values = "percent", signals = c("email", "IM"), start_hour = "0900", end_hour = "1700", exp_hours = NULL, mingroup = 5, active_threshold = 0, method = "bw", return = "plot" )
workpatterns_classify( data, hrvar = "Organization", values = "percent", signals = c("email", "IM"), start_hour = "0900", end_hour = "1700", exp_hours = NULL, mingroup = 5, active_threshold = 0, method = "bw", return = "plot" )
data |
A data frame containing data from the Hourly Collaboration query. |
hrvar |
A string specifying the HR attribute to cut the data by.
Defaults to |
values |
Only valid if using |
signals |
Character vector to specify which collaboration metrics to use:
|
start_hour |
A character vector specifying starting hours, e.g.
|
end_hour |
A character vector specifying starting hours, e.g. |
exp_hours |
Numeric value representing the number of hours the
population is expected to be active for throughout the workday. By default,
this uses the difference between |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
active_threshold |
A numeric value specifying the minimum number of signals to be greater than in order to qualify as active. Defaults to 0. Only applicable for the binary-week method. |
method |
String to pass through specifying which method to use for
classification. By default, a binary week-based ( |
return |
String specifying what to return. This must be one of the following strings:
See |
The working patterns archetypes are a set of segments created based on the aggregated hourly activity of employees. A motivation of creating these archetypes is to capture the diversity in working patterns, where for instance employees may choose to take multiple or extended breaks throughout the day, or choose to start or end earlier/later than their standard working hours. Two methods have been developed to capture the different working patterns.
This function is a wrapper around workpatterns_classify_bw()
and
workpatterns_classify_pav()
, and calls each function depending on what is
supplied to the method
argument. Both methods implement a rule-based
classification of either person-weeks or persons that pull apart
different working patterns.
See individual sections below for details on the two different implementations.
Character vector to specify what to return. Valid options include:
"plot"
: ggplot object. With the bw
method, this returns a grid
showing the distribution of archetypes by 'breaks' and number of active
hours (default). With the pav
method, this returns a faceted bar plot
which shows the percentage of signals sent in each hour, with each facet
representing an archetype.
"data"
: data frame. The raw data with the classified archetypes.
"table"
: data frame. A summary table of the archetypes.
"plot-area"
: ggplot object. With the bw
method, this returns an area
plot of the percentages of archetypes shown over time. With the pav
method, this returns an area chart which shows the percentage of signals
sent in each hour, with each line representing an archetype.
"plot-hrvar"
: ggplot object. A bar plot showing the count of archetypes,
faceted by the supplied HR attribute. This is only available for the bw
method.
"plot-dist"
: returns a heatmap plot of signal distribution by hour and
archetypes. This is only available for the bw
method.
This method classifies each person-week into one of the eight archetypes:
0 Low Activity (< 3 hours on): fewer than 3 hours of active hours
1.1 Standard continuous (expected schedule): active hours equal to expected hours, with all activity confined within the expected start and end time
1.2 Standard continuous (shifted schedule): active hours equal to expected hours, with activity occurring beyond either the expected start or end time.
2.1 Standard flexible (expected schedule): active hours less than or equal to expected hours, with all activity confined within the expected start and end time
2.2 Standard flexible (shifted schedule): active hours less than or equal to expected hours, with activity occurring beyond either the expected start or end time.
3 Long flexible workday: number of active hours exceed expected hours, with breaks occurring throughout
4 Long continuous workday: number of active hours exceed expected hours, with activity happening in a continuous block (no breaks)
5 Always on (13h+): number of active hours greater than or equal to 13
Standard here denotes the behaviour of not exhibiting total number of
active hours which exceed the expected total number of hours, as supplied by
exp_hours
. Continuous refers to the behaviour of not taking breaks,
i.e. no inactive hours between the first and last active hours of the day,
where flexible refers to the contrary.
This is the recommended method over pav
for several reasons:
bw
ignores volume effects, where activity volume can still bias the
results towards the 'standard working hours'.
It captures the intuition that each individual can have 'light' and 'heavy' weeks with respect to workload.
The notion of 'breaks' in the 'binary-week' method is best understood as 'recurring disconnection time'. This denotes an hourly block where there is consistently no activity occurring throughout the week. Note that this applies a stricter criterion compared to the common definition of a break, which is simply a time interval where no active work is being done, and thus the more specific terminology 'recurring disconnection time' is preferred.
In the standard plot output, the archetypes have been abbreviated to show the following:
Low Activity - archetype 0
Standard - archetypes 1.1 and 1.2
Flexible - archetypes 2.1 and 2.2
Long continuous - archetype 4
Long flexible - archetype 3
Always On - archetype 5
This method classifies each person (based on unique PersonId
) into
one of the six archetypes:
Absent: Fewer than 10 signals over the week.
Extended Hours - Morning: 15%+ of collaboration before start hours and less than 70% within standard hours, and less than 15% of collaboration after end hours
Extended Hours - Evening: Less than 15% of collaboration before start hours and less than 70% within standard hours, and 15%+ of collaboration after end hours
Overnight workers: less than 30% of collaboration happens within standard hours
Standard Hours: over 70% of collaboration within standard hours
Always On: over 15% of collaboration happens before starting hour and end hour (both conditions must satisfy) and less than 70% of collaboration within standard hours
The Working Patterns archetypes as calculated
using the binary-week method shares many similarities with the Flexibility
Index (see flex_index()
):
Both are computed directly from the Hourly Collaboration Flexible Query.
Both apply the same binary conversion of activity on the signals from the Hourly Collaboration Flexible Query.
Ainize Cidoncha [email protected]
Carlos Morales Torrado [email protected]
Martin Chan [email protected]
Other Clustering:
personas_hclust()
,
workpatterns_hclust()
Other Working Patterns:
flex_index()
,
identify_shifts()
,
identify_shifts_wp()
,
plot_flex_index()
,
workpatterns_area()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()
# Returns a plot by default em_data %>% workpatterns_classify(method = "bw") # Return an area plot # With custom expected hours em_data %>% workpatterns_classify( method = "bw", return = "plot-area", exp_hours = 7 ) em_data %>% workpatterns_classify(method = "bw", return = "table") em_data %>% workpatterns_classify(method = "pav") em_data %>% workpatterns_classify(method = "pav", return = "plot-area")
# Returns a plot by default em_data %>% workpatterns_classify(method = "bw") # Return an area plot # With custom expected hours em_data %>% workpatterns_classify( method = "bw", return = "plot-area", exp_hours = 7 ) em_data %>% workpatterns_classify(method = "bw", return = "table") em_data %>% workpatterns_classify(method = "pav") em_data %>% workpatterns_classify(method = "pav", return = "plot-area")
Apply a rule based algorithm to emails sent by hour of day, using the binary week-based ('bw') method.
workpatterns_classify_bw( data, hrvar = NULL, signals = c("email", "IM"), start_hour = "0900", end_hour = "1700", mingroup = 5, exp_hours = NULL, active_threshold = 0, return = "plot" )
workpatterns_classify_bw( data, hrvar = NULL, signals = c("email", "IM"), start_hour = "0900", end_hour = "1700", mingroup = 5, exp_hours = NULL, active_threshold = 0, return = "plot" )
data |
A data frame containing email by hours data. |
hrvar |
A string specifying the HR attribute to cut the data by. Defaults to NULL. This only affects the function when "table" is returned. |
signals |
Character vector to specify which collaboration metrics to use:
|
start_hour |
A character vector specifying starting hours, e.g.
|
end_hour |
A character vector specifying starting hours, e.g. |
mingroup |
Numeric value setting the privacy threshold / minimum group size. Defaults to 5. |
exp_hours |
Numeric value representing the number of hours the population
is expected to be active for throughout the workday. By default, this uses
the difference between |
active_threshold |
A numeric value specifying the minimum number of signals to be greater than in order to qualify as active. Defaults to 0. |
return |
Character vector to specify what to return. Valid options include:
|
A different output is returned depending on the value passed to the return
argument:
"plot"
: returns a summary grid plot of the classified archetypes
(default). A 'ggplot' object.
"data"
: returns a data frame of the raw data with the classified
archetypes
"table"
: returns a data frame of summary table of the archetypes
"plot-area"
: returns an area plot of the percentages of archetypes
shown over time. A 'ggplot' object.
"plot-hrvar"
: returns a bar plot showing the count of archetypes,
faceted by the supplied HR attribute. A 'ggplot' object.
Ainize Cidoncha [email protected]
Other Working Patterns:
flex_index()
,
identify_shifts()
,
identify_shifts_wp()
,
plot_flex_index()
,
workpatterns_area()
,
workpatterns_classify()
,
workpatterns_classify_pav()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()
Apply a rule based algorithm to emails or instant messages sent by hour of day. This uses a person-average volume-based ('pav') method.
workpatterns_classify_pav( data, values = "percent", signals = c("email", "IM"), start_hour = "0900", end_hour = "1700", return = "plot" )
workpatterns_classify_pav( data, values = "percent", signals = c("email", "IM"), start_hour = "0900", end_hour = "1700", return = "plot" )
data |
A data frame containing data from the Hourly Collaboration query. |
values |
Character vector to specify whether to return percentages or absolute values in "data" and "plot". Valid values are:
|
signals |
Character vector to specify which collaboration metrics to use:
|
start_hour |
A character vector specifying starting hours, e.g. "0900" |
end_hour |
A character vector specifying starting hours, e.g. "1700" |
return |
Character vector to specify what to return. Valid options include:
|
A different output is returned depending on the value passed to the return
argument:
"plot"
: returns a bar plot of signal distribution by hour and
archetypes (default). A 'ggplot' object.
"data"
: returns a data frame of the raw data with the classified archetypes.
"table"
: returns a data frame of a summary table of the archetypes.
"plot-area"
: returns an overlapping area plot. A 'ggplot' object.
Ainize Cidoncha [email protected]
Other Working Patterns:
flex_index()
,
identify_shifts()
,
identify_shifts_wp()
,
plot_flex_index()
,
workpatterns_area()
,
workpatterns_classify()
,
workpatterns_classify_bw()
,
workpatterns_hclust()
,
workpatterns_rank()
,
workpatterns_report()
Apply hierarchical clustering to emails sent by hour of day. The hierarchical clustering uses cosine distance and the ward.D method of agglomeration.
workpatterns_hclust( data, k = 4, return = "plot", values = "percent", signals = "email", start_hour = "0900", end_hour = "1700" )
workpatterns_hclust( data, k = 4, return = "plot", values = "percent", signals = "email", start_hour = "0900", end_hour = "1700" )
data |
A data frame containing data from the Hourly Collaboration query. |
k |
Numeric vector to specify the |
return |
String specifying what to return. This must be one of the following strings:
See |
values |
Character vector to specify whether to return percentages or absolute values in "data" and "plot". Valid values are:
|
signals |
Character vector to specify which collaboration metrics to use:
|
start_hour |
A character vector specifying starting hours, e.g. "0900" |
end_hour |
A character vector specifying starting hours, e.g. "1700" |
The hierarchical clustering is applied on the person-average volume-based (pav) level. In other words, the clustering is applied on a dataset where the collaboration hours are averaged by person and calculated as % of total daily collaboration.
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object of a bar plot (default)
"data"
: data frame containing raw data with the clusters
"table"
: data frame containing a summary table. Percentages of signals
are shown, e.g. x% of signals are sent by y hour of the day.
"plot-area"
: ggplot object. An overlapping area plot
"hclust"
: hclust
object for the hierarchical model
"dist"
: distance matrix used to build the clustering model
Other Clustering:
personas_hclust()
,
workpatterns_classify()
Other Working Patterns:
flex_index()
,
identify_shifts()
,
identify_shifts_wp()
,
plot_flex_index()
,
workpatterns_area()
,
workpatterns_classify()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_rank()
,
workpatterns_report()
# Run clusters, returning plot workpatterns_hclust(em_data, k = 5, return = "plot") # Run clusters, return raw data workpatterns_hclust(em_data, k = 4, return = "data") %>% head() # Run clusters for instant messages only, return hclust object workpatterns_hclust(em_data, k = 4, return = "hclust", signals = c("IM"))
# Run clusters, returning plot workpatterns_hclust(em_data, k = 5, return = "plot") # Run clusters, return raw data workpatterns_hclust(em_data, k = 4, return = "data") %>% head() # Run clusters for instant messages only, return hclust object workpatterns_hclust(em_data, k = 4, return = "hclust", signals = c("IM"))
Takes in an Hourly Collaboration query and returns a count table of working patterns, ranked from the most common to the least.
workpatterns_rank( data, signals = c("email", "IM"), start_hour = "0900", end_hour = "1700", top = 10, mode = "binary", return = "plot" )
workpatterns_rank( data, signals = c("email", "IM"), start_hour = "0900", end_hour = "1700", top = 10, mode = "binary", return = "plot" )
data |
A data frame containing hourly collaboration data. |
signals |
Character vector to specify which collaboration metrics to use:
|
start_hour |
A character vector specifying starting hours,
e.g. " |
end_hour |
A character vector specifying starting hours,
e.g. |
top |
numeric value specifying how many top working patterns to display in plot,
e.g. |
mode |
string specifying aggregation method for plot. Valid options include:
|
return |
String specifying what to return. This must be one of the following strings:
See |
A different output is returned depending on the value passed to the return
argument:
"plot"
: ggplot object. A plot with the y-axis showing the top ten
working patterns and the x-axis representing each hour of the day.
"table"
: data frame. A summary table for the top working patterns.
Other Visualization:
afterhours_dist()
,
afterhours_fizz()
,
afterhours_line()
,
afterhours_rank()
,
afterhours_summary()
,
afterhours_trend()
,
collaboration_area()
,
collaboration_dist()
,
collaboration_fizz()
,
collaboration_line()
,
collaboration_rank()
,
collaboration_sum()
,
collaboration_trend()
,
create_bar()
,
create_bar_asis()
,
create_boxplot()
,
create_bubble()
,
create_dist()
,
create_fizz()
,
create_inc()
,
create_line()
,
create_line_asis()
,
create_period_scatter()
,
create_rank()
,
create_sankey()
,
create_scatter()
,
create_stacked()
,
create_tracking()
,
create_trend()
,
email_dist()
,
email_fizz()
,
email_line()
,
email_rank()
,
email_summary()
,
email_trend()
,
external_dist()
,
external_fizz()
,
external_line()
,
external_network_plot()
,
external_rank()
,
external_sum()
,
hr_trend()
,
hrvar_count()
,
hrvar_trend()
,
internal_network_plot()
,
keymetrics_scan()
,
meeting_dist()
,
meeting_fizz()
,
meeting_line()
,
meeting_quality()
,
meeting_rank()
,
meeting_summary()
,
meeting_trend()
,
meetingtype_dist()
,
meetingtype_dist_ca()
,
meetingtype_dist_mt()
,
meetingtype_summary()
,
mgrcoatt_dist()
,
mgrrel_matrix()
,
one2one_dist()
,
one2one_fizz()
,
one2one_freq()
,
one2one_line()
,
one2one_rank()
,
one2one_sum()
,
one2one_trend()
,
period_change()
,
workloads_dist()
,
workloads_fizz()
,
workloads_line()
,
workloads_rank()
,
workloads_summary()
,
workloads_trend()
,
workpatterns_area()
Other Working Patterns:
flex_index()
,
identify_shifts()
,
identify_shifts_wp()
,
plot_flex_index()
,
workpatterns_area()
,
workpatterns_classify()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_hclust()
,
workpatterns_report()
# Plot by default workpatterns_rank( data = em_data, signals = c( "email", "IM", "unscheduled_calls", "meetings" ) ) # Plot with prop / heatmap mode workpatterns_rank( data = em_data, mode = "prop" )
# Plot by default workpatterns_rank( data = em_data, signals = c( "email", "IM", "unscheduled_calls", "meetings" ) ) # Plot with prop / heatmap mode workpatterns_rank( data = em_data, mode = "prop" )
This function takes a Hourly Collaboration query and generates a HTML report on working patterns archetypes. Archetypes are created using the binary-week method.
workpatterns_report( data, hrvar = "Organization", signals = c("email", "IM"), start_hour = "0900", end_hour = "1700", exp_hours = NULL, path = "workpatterns report", timestamp = TRUE )
workpatterns_report( data, hrvar = "Organization", signals = c("email", "IM"), start_hour = "0900", end_hour = "1700", exp_hours = NULL, path = "workpatterns report", timestamp = TRUE )
data |
A Hourly Collaboration Query dataset in the form of a data frame. |
hrvar |
String specifying HR attribute to cut by archetypes. Defaults to
|
signals |
See |
start_hour |
See |
end_hour |
See |
exp_hours |
See |
path |
Pass the file path and the desired file name, excluding the file
extension. For example, |
timestamp |
Logical vector specifying whether to include a timestamp in the file name. Defaults to TRUE. |
An HTML report with the same file name as specified in the arguments is generated in the working directory. No outputs are directly returned by the function.
Other Reports:
IV_report()
,
capacity_report()
,
coaching_report()
,
collaboration_report()
,
connectivity_report()
,
generate_report()
,
meeting_tm_report()
,
read_preamble()
,
subject_validate_report()
,
validation_report()
Other Working Patterns:
flex_index()
,
identify_shifts()
,
identify_shifts_wp()
,
plot_flex_index()
,
workpatterns_area()
,
workpatterns_classify()
,
workpatterns_classify_bw()
,
workpatterns_classify_pav()
,
workpatterns_hclust()
,
workpatterns_rank()
This function adds a character at the start and end of a character string, where the default behaviour is to add a double quote.
wrap(string, wrapper = "\"")
wrap(string, wrapper = "\"")
string |
Character string to be wrapped around |
wrapper |
Character to wrap around |
Character vector containing the modified string.
Other Support:
camel_clean()
,
check_inputs()
,
combine_signals()
,
cut_hour()
,
extract_date_range()
,
extract_hr()
,
heat_colours()
,
is_date_format()
,
maxmin()
,
p_test()
,
pairwise_count()
,
plot_WOE()
,
read_preamble()
,
rgb2hex()
,
totals_bind()
,
totals_col()
,
totals_reorder()
,
tstamp()
,
us_to_space()
Wrap text in visualizations according to a preset character
threshold. The next space in the string is replaced with \n
, which will
render as next line in plots and messages.
wrap_text(x, threshold = 15)
wrap_text(x, threshold = 15)
x |
String to wrap text |
threshold |
Numeric, defaults to 15. Number of character units by which
the next space would be replaced with |
wrapped <- wrap_text( "The total entropy of an isolated system can never decrease." ) message(wrapped)
wrapped <- wrap_text( "The total entropy of an isolated system can never decrease." ) message(wrapped)